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Introduction  

 The previous investigations [1-4] have suggested a model of 

the unitary field theory where a particle with mass m is 

described by the equation 

     

0=Φ−
∂

Φ∂
m

x
i

µ

µλ
                                     (1) 

and each component sΦ
of the wave function satisfies the 

second order equation 

02
2

=Φ+
∂∂

Φ∂
s

s m
xx

uu
νµ

νµ

,                          (2) 

so that the commutation relations for matrices 
µλ  have the form 

Ig
µνµννµ λλλλ 2=+

                                     (3) 

where 

)
v

,();x,(
γγ

µµ 1
== utx

 is the particle velocity; 

3210 ,,,, =νµ
; a metrics with signature (+,-,-,-) is used; c and 

h equal 1, and repeated indices are assumed to be summed. 

Common approach 

 For equation (1) to be the starting point of the theory, the 

equation should first result in the correct energy-momentum 

relation for a free particle and then be the Lorentz covariant.  

Equation (2) meets the former condition in the form 

( ) 22

mup =µ
µ

 
Matrices are functions of the particle velocity, and thus the 

commutation relations (3) alone are insufficient for proving 

invariance of eq. (1) under the Lorentz transformations; 

therefore let us first specify the functional dependence of the 

matrices on the velocity. Since the trivial solution 

Iu
µµλ =  

is totally uninteresting, let us consider the case of linear 

dependence on the velocity 

   
4µ

σ
µσµ λλλ += u

                                        (4) 

where 
µσλ  and 

4µλ  are numerical matrices. The condition (3) 

holds identically if 

( )Igggg ντµσνσµτµσντντµσ λλλλ −=+ 2
 

 
Ig

µνµννµ λλλλ 2
4444 =+

                            (5) 

 044 =+ µντντµ λλλλ  

Because of the antisymmetry of 
σµµσ λλ −= , only ten out of 

the twenty matrices are independent quantities.  These matrices 

mutually anticommute, the square of four of them is equal to 

unity and that of six, to minus unity.  To put it differently, eq. 

(5) is specified by ten generatrices of the alternion algebra 11

4 A
, 

which is isomorphous with the algebra of the sixteenth order 

quaternion matrices [Zaitsev,1974].  Since they are not 

convenient, let us replace the quaternion matrices with ten 

complex, irreducible, unitary 32
nd

 order matrices 

  
( ) ( ) 1−+

= µνµν λλ
, 

( ) ( ) 144 −+
= µµ λλ

            (6) 

This situation arises in construction of Dirac matrices, which are 

usually chosen as complex fourth order matrices even though the 

equation 

Ig
µνµννµ γγγγ 2=+

 
is satisfied by four second–order quaternion matrices. 

 

From eqs. (5) and (6) it follows that four matrices are Hermitian 

and six are anti-Hermitian 

( ) aa 00 λλ =
+

,   
( ) abab λλ −=

+

,       

 a,b=1,2,3,4                                                         (7) 

If a matrix Λ  is introduced
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342423141312 λλλλλλ=Λ , Λ−=Λ=Λ −+ 1
    (8)       

then the Hermitian conjugations conditions (7) can be 

rearranged into 

( ) 1−+
ΛΛ= αβαβ λλ

                                            (9) 

Represented in the form (5) the commutation relations are 

unwieldy and inconvenient in proving the relativistic invariance; 

however, they can be represented in a simpler form. Let us 

define a symmetrical tensor αβg
  

14433221100 =−=−=−=−= ggggg
 

0=αβg
    if     

βα ≠
                                   (10) 

henceforth subscripts of initial letters of the Greek alphabet 

δγβα ,,,
 take on values from 0 to 4 while those of the middle 

of the alphabet from 0 to 3. The inverse tensor 
αβ

g
 provides a 

compact restatement of commutation relation (5) 

( )Igggg βδαγβγαδαβγδγδαβ λλλλ −=+ 2
 (11)        

Eqs. (4), (10) and (11) make it possible to prove the relativistic 

invariance of eq. (1) by using a five-dimensional group of 

transformations of coordinate O (4,1). For this purpose extend 

eq. (1) to the case of a five-dimensional pseudo-Euclidian space 

with a metric tensor (10) 

 

0=Φ−
∂

Φ∂
m

x
ui

βα
αβλ

                               (12) 

(where 
α

u  is the 5-velocity, 
0=α

α uu
) and then prove 

invariance of this equation under the group of five-dimensional 

transformation O(4,1), which contains the Lorentz group as a 

subgroup. Under reduction of O (4,1) to the Lorentz group, we 

assume that 144 == uConstx ,  and 

1
4

≡
∂

∂

x  then we have 

eq. (1); in other words, one can assume that eq. (1) is invariant 

under five-dimensional transformations, but the physical 

solution does not depend on the fifth coordinate. Incidentally, 

eq. (12) can be interpreted differently, but we will not discuss 

these possibilities, for using the five dimensions is merely a 

convenient tool, which enables us to make full use of simplicity 

of the commutation relations (11). 

To prove invariance of the equation, it is sufficient to show [20] 

that for any transformation of coordinates 

  
( ) βα

β
α

xax =
'

; 

  
( ) invxx =''

α
α

                                               (13) 

there is a linear transformation S(a) of wave functions, the 

primed and unprimed reference frame 

 
( ) ( ) ( )xaSx Φ=Φ ''

; 

 
( ) ( ) ( )''

xaSx Φ=Φ −1

                                  (14) 

and 
( )'' xΦ

 is a solution of the equation, which has the form of 

eq. (12) in the primed reference frame 

           (15) 

Substitute  (14) into (12); multiply the left-hand side by S(a), 

and use the definition (13) to have 

( )
( ) 0

1 =Φ











−

∂

∂− ''

'

'
xm

x
uaaSiS

δ
γ

δ
β

γ
α

αβλ

 
This equation coincides with (15), if the matrix has the property 

γδαβδ
β

γ
α λλ =−1

SSaa
                                      (16) 

Construct S for the infinitesimal proper transformation of the 

group O (4,1) 
β
α

β
α

β
α εδ +=a

; 

αβαβαβ ε+= ga
                                            (17) 

with 

βααβ εε −=
                                                     (18) 

Expand S in power of ε  and keep only linear terms 

αβ
αβ εσ

4

1
1−=S

                                           (19) 

where 
βααβ σσ −=  by eq. (18). Substitute eqs. (17)-(19) into 

eq. (16), keep first-order terms in ε , use the notation 

[B,C]=BC-CB for the commutation brackets and have 

[ ] αγβδαδβγβδαγβγαδγδαβ λλλλλσ gggg −+−=,2
 

The antisymmetric solution of this equation 

[ ]αδβγ
γδ

αβ λλσ ,g
2

1
=

                                  (20) 

is, by virtue of diagonality of the metric tensor and 

antisymmetry of 
αβλ  , a sum of mutually commutating terms; in 

particular, 
12σ  has the form 

14241323102012 λλλλλλσ −−=  
According to eq. (19)  S  for an infinitesimal transformation is 

given by 

[ ]αββγ
αβγδ λλε ,gS

8

1
1−=

 
Hence, for rotation through a finite angle ω  about this axis in 

the direction labeled n is represented as 









−= n
PS αβ

αβωσ
4

1
exp

                               (21) 

 where  

n
Pαβ is the generator of rotation about this axis. The 

matrix S is not, generally speaking, unitary but formula (9) 

easily shows that 

σσ −=ΛΛ +−1

, 

consequently, for proper transformations 
11 −+− =ΛΛ SS                                                 (22) 

Let us consider improper transformations of space reflection and 

time reversal. For space reflection the matrix a is diagonal 

13

3

2

2

1

1

4

4

0

0 =−=−=−== aaaaa
, 

then eq. (16) for the space reflection operator P is satisfied by 
1342414030201 −+ === PPP λλλλλλ           (23) 

which ensures invariance of both eq. (1) and eq. (12). Construct 

a transformation of the time inversion; for this purpose introduce 

an interaction of a particle whose charge is e with an external 
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electromagnetic field 
( )k

AA ,ϕµ =
 by means of the gauge 

invariant substitution 

µµµ
eA

x
i

x
i −

∂

∂
→

∂

∂

 
and rewrite eq. (1) in the form [2,3,5]: 

Φ=Φ







++








+

∂
−=

∂

Φ∂
HemeA

dx
i

t
i kk

k 00 ϕλλλ
Determine 

transformation T as such that if 

( ) ( )tTttt T Φ=Φ=Φ−= ''''
,

; then the latter equation 

becomes 

( ) ( ) ( ) ( )''

'

''

tTHT
t

t
TTi Φ=

∂

Φ∂
− −− 110λ

 
When the sense of time is reserved 

kk

kk AAuuuu −=Φ=Φ−== '''' ;;;00  
and, before all, it is necessary to change the sign between two 

terms 
kx

i
∂

∂

 and keA
; therefore the transformation is regarded 

as a complex conjugation operator multiplied by the matrix T: 

( ) ( )tTtTT

∗Φ=Φ=Φ '

                                  (24) 

This gives 

( )
=

∂

Φ∂
















−

∗

'

''
1

0

t

t
TTi λ

 

( )
( )

0

1 ' 1 ' '

'
( )

k

k
k

T T i eA m e T T t
x

λ ϕ λ
∗ ∗

− −

    ∂  = − − + + + Φ     ∂   

 

and for invariance of the equation it is necessary that   

041

04

41

4

21

2

01

0

;;; λλλλλλλλ =−==−= −
∗

−
∗

−
∗

−
∗

TTTTTTTT k

k

k

k

k

k

  (25) 

Thence it immediately follows that TTT == −∗ 1
, though the 

explicit form of the matrix T depends on the particular 

representation of the matrix 
αβλ . Note that there is just one 

matrix 

∏
<

=
4

βα

αβλλ
 

which commutes with both generators 
αβσ  for the 

representation of the group O (4,1) and with the operators of 

discrete transformation P and T. Under reduction of O (4,1) to 

the Lorentz group two more matrices 

12

34241404

1 Λ=Λ=Λ λλλλλ ;
 

are generated which commute with the generators 
µσσ of the 

representation of the Lorentz group and anticommute with P and 

T. Consequently, formulae (21), (23)-(25) specify the reducible 

representation of the Lorentz group and this representation is 

double-valued. Indeed, consider a particular case, rotation 

through angle ω  about the Z-axis. In this case 

12112 =−= ZZ
PP

; using the explicit form of 
12σ  we have 

+















+







=








−=

2
sin

2
cos

2
cos

2
exp 212312 ωω

σ
ω

σ
ω

S

 
( )

+














+
+

2
sin

2
cos

2

3 2

212 ωωσ









+

2
sin 3142413231020 ω

λλλλλλ
 

The half-angle is an expression of the double value of the wave 

function transformation. Therefore the observables in the theory 

should be bilinear in 
( )xΦ

. The matrix Λ makes it possible to 

determine the adjoint wave function ΛΦ=Φ +
−

, which is a 

solution of the adjoint equation 

0=Φ+
∂

Φ∂ −
−

m
x

i
µ

µ
λ

 
An adjoint wave function under an arbitrary transformation of 

the co-ordinates should be transformed by the equation 

ΛΛΦ=Φ +−
−−

S
1'

 which for proper rotations (22) leads to 

1−
−−

Φ=Φ S
'

, for space and time inversions PP

−−

Φ−=Φ
'

 and 

1−
∗−−

Φ−=Φ T
'

, respectively. The adjoint wave function and 

the matrices 1Λ,λ
 and 2Λ

 make it possible to construct four 

independent scalar functions 
;;; ΦΛΦΦΦΦΦ

−−−

1λ
 and 

ΦΛΦ
−

2 , which under space and time inversions are 

transformed as 

ΦΦ−=ΦΦ
−

'
_

'

PP   
ΦΦ=ΦΦ

−−
''

TT              (26a) 

ΦΦ−=ΦΦ
−

λλ '
_
'

PP   
ΦΦ−=ΦΦ

−

λλ '
_
'

TT     (26b) 

ΦΛΦ=ΦΛΦ
−−

11

''

PP ΦΛΦ−=ΦΛΦ
−

11

'
_
'

TT       (26c) 

 
ΦΛΦ=ΦΛΦ

−−

22

''

PP   
ΦΛΦ=ΦΛΦ

−

22

'
_
'

TT       (26d) 

Following the classification of Ref. [18,20], the quantities (26a-

d) are singular and simple pseudo-scalar and singular and simple 

scalar, respectively, each of these functions being a unique 

scalar function of the associated type, quadratic in 
( )xΦ

.  To 

obtain a numerical scalar let us use a representation of the 

function 
( )xΦ

 as a four-dimensional Fourier integral.  Since 

each component of 
( )xΦ

satisfies the second order equation (2), 

the general solution represented entirely in relativistic terms has 

the form  

( )
( )

( ){ } ( )kmukkdx
xik

Φ−=Φ ∫
224

2
3

2

2 µ
µδ

π

µ
µe

    (27)     

where 

( ){ } ( ) ( ){ }mukmuk
m

muk ++−=− µ
µ

µ
µ

µ
µ δδδ

2

122
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is the relativistic δ -function and the amplitude 

( ) ( )k,
0

kk Φ=Φ
 satisfies the equation   

( ) ( ) 0=Φ+ kmkµ
µλ

      for    
( ) 22

mku =
 

Because the integrand includes a δ -function, the integration is 

performed over just two Lorentz-invariant hyper surfaces 

muk ±=µ
µ , rather than the entire four-dimensional k-

space. This allows for decomposing the integral (27) into two 

summands 

( ) ( ) ( )xxx −± Φ+Φ=Φ
;   

( )
( )

( )
( )k

m

muk
kdx Φ=Φ ∫

±

22

1 4

2
3

∓
µ

µδ

π
     (28) 

Using this representation and integrating over the three-

dimensional volume, we have 

∫ ∫ =Φ
∂

Φ∂
−=

∂

Φ∂
Φ ±

−
±

±

γγ µ

µ

µ

µ dV

x
u

dV

x
u

_

 

( ) ( ) ( )kkmukkd
m

i
ΦΦ±=

−

∫ ∓
µ

µδ4

2  

∫ ∫ =Φ
∂

Φ∂
=

∂

Φ∂
Φ

−
±

±

γγ µ

µ

µ

µ dV

x
u

dV

x
u

∓

∓_

 

 
0

0 0 0

2
exp , ,

2

i ix m m m
d

m u u u

−  ±   
= Φ Φ     

    
∫

ku ku
k k k

∓
∓ ∓  

Combining these relations and using the equality 

( ) ( ) ( ) ( ){ }22
mukukmukmuk −=+−− µ

µ
µ

µ
µ

µ
µ

µ δθδδ
we find 

that 

∫ =













Φ

∂

Φ∂
−

∂

Φ∂
Φ

−
−

γµ

µ

µ

µ dV

x
u

x
u

 

( ) ( ){ } ( ) ( )∫ ΦΦ−
−

kkmukukkdi 224 µ
µ

µ
µ δθ

 (29) 

 where 

( )








<−

>
=

0 if1

0 if 1

ku

ku
ku

,

,
θ

 
The right-hand side of eq. (29) is explicitly represented in 

covariant form, which facilitates a study of properties, which can 

be traced to the space and time inversions.  More specifically, 

eq. (29) is a simple pseudo-scalar because 
∫ ⋅⋅⋅ kd

4

 and 

( ){ }22

muk −µ
µδ

 are simple scalars, 
( )µ

µθ uk
 is a singular 

scalar, (θ  is an odd function and 
µ

k  and 
µ

u  are simple and 

singular vectors, respectively), and 
( ) ( )kk ΦΦ

−

 is a singular 

pseudo-scalar, according to the definition (27) and eq. (26a). It is 

easy to construct a simple scalar 

γµ

µ

µ

µ dV

x
u

x
u∫ 













ΦΛ

∂

Φ∂
−

∂

Φ∂
ΛΦ

−
−

11

 
which can, following  [2,3], be interpreted as the particle mass 

while the nonlinear equation   [4-7] is represented as follows:    

1 1 0
dV

i u u
x x x

µ µ µ

µ µ µ
λ

γ

−
− 

∂Φ ∂Φ ∂ Φ − Φ Φ Λ − Λ Φ =
 ∂ ∂ ∂
 
∫     (30) 

Unfortunately, the authors can only look at this fundamental (in 

our view) equation.  It appears that any further progress in 

finding a solution to such an equation will be achieved with the 

help of computers and future symbol mathematics programs (of 

the Maple-16, Mathematica-9 types, etc.).  For this purpose 

equation (30) should have a form with a clear matrix 

appearance.  It is well known that the solution will not depend 

on a concrete representation of matrices 2,Λµλ
, it is only 

important that the commutations relations were satisfied.  By the 

way, the latter can be checked by direct finding of commutators 

and anticommutators with apparent matrix representation.  Let 

us note that the authors of [4-7] had received these results long 

before the epoch of personal computers and symbol math 

programs. When these things appeared, the first thing the 

authors did was to check the correctness of matrix correlations 

of the size 32х32! 

In order to receive a concrete appearance of all the matrices, let 

us apply the bloc ideas. For this purpose, let us write down the 

basic matrices  

iZg ,,,3,2,1,0 µνγγγγ

 

 
For these matrices the following standard commutation relations 

are correct: 
µνµννµ γγγγ g2=+

 ;     
3,2,1,0, =νµ

; 

where 
4,3,2,1,0,,, =τσνµ

  and  
−−−+= ,,,g

. 

From these basic matrices 10 supplementary bloc matrices can 

be constructed -  
34242314131204030201

,,,,,,,,, λλλλλλλλλλ
, 

which have a clear appearance:  
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Let us define four-velocity 

);
1

()3,2,1,0(
λγ

µ v
== uuuuu

. 

The matrices in the main equation (30) will be defined as: 
040302010 3210 λλλλλ ++++= uuu  
141312011

3200 λλλλλ ++++= uuu  
242321022

3010 λλλλλ ++++= uuu  
343231033 0210 λλλλλ ++++= uuu  

The equation then will look as follows: 

0
3

3

2

2

1

1

0

0 =Φ−








∂

Φ∂
+

∂

Φ∂
+

∂

Φ∂
+

∂

Φ∂
m

xxxx
i λλλλ

    (31) 

The mass term of this equation will then be defined by the 

following correlation: 

γµ

µ

µ

µ dV

x
u

x
um

V

∫ 







ΦΛ

∂

Φ∂
−

∂

Φ∂
ΛΦ=

+
+

22

 

because ΛΦ=Φ +
−

; 
34241404

1 λλλλ=Λ
; 

342423141312 λλλλλλ=Λ ; 12 ΛΛ=Λ
 

The explicit form of 4 matrices 
µλ  depending on velocity, as 

well as of numerical matrices 21,, ΛΛΛ
of the size 32х32. 

Using a good personal computer it is possible to prove the 

correctness of the correlations in (5) by making direct 

computations of the commutators and anticommutators with the 

help of symbol mathematics programs (Maple -16, Mathematica 

- 9).  
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Solve equations 
   The attempts to solve equation of the (30), (31) type gave no 

result. However, [8-10] an interesting was found for a modified 

scalar version of the integro-differential equation (30), which 

may be written down as follows: 

( ) ( ), , , 2 , , , *x y z t i x y z t
t x y z

 ∂ ∂ ∂ ∂
+ + + Φ = − Φ 

∂ ∂ ∂ ∂ 
                                                                                                          

                                                                            (32) 

( ) ( )
dxdydz

t

tzyx
tzyx

x y z

∂

Φ∂
Φ∫ ∫ ∫

∗ ,,,
,,,*

0 0 0 We will 

seek the solution of this equation in the form 

))(exp(),,(),,,( kzkykxtizyxFtzyx −−−−=Φ ω
where                  

)()()(),,( zZyYxXzyxF =
 

and 
k,ω

 are some constant parameters. Substituting these 

expressions in (32), we obtain under condition k3=ω  

following equation w.r.t  X,Y,Z: 

=++
)(

)('

)(

)('

)(

)('

zZ

zZ

yY

yY

xX

xX

 

∫ ∫ ∫⋅⋅−
x y z

dzzZdyyYdxxX
0 0 0

222
)()()(2ω

 
Differentiating the left-hand and right-hand sides w.r.t.  x,y,z  

successively,  we obtain three 

equations for 
:)(),(),( zZyYxX
 

∫ ∫⋅−=






 y z
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(33)  
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Putting 

∫=
x

dxxXxU
0

2 ,)()(

    

∫=
y

dyyYyV
0

2 )()(

,    

∫=
z

dzzZzW
0

2 ,)()(

 

we obtain the system of ordinary differential equations for 

:)(),...(),( zWyYxX
 

),()(',2
)'(

'' 23
2

xXxUVWX
X

X
X =−=− ω

),()(',2
)'(

'' 23
2

yYyVUWY
Y

Y
Y =−=− ω

(34) 

 

).()(',2
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)'(
'' 23

2

zZzWUVZ
zZ

Z
Z =−=− ω

 
Further, we have put the numerical value of , namely, 

and integrated numerically 

(with the help of Maple-16) this system  under following initial 

conditions (reasonable from physical point of view): 

(0) (0) (0) 1, '(0) '(0) '(0) (0) (0) (0) 0.X Y Z X Y Z U V W= = = = = = = = =

According to obtained   solution X(x), Y(y),  Z(z) are identical 

rapidly decreasing functions of following type:  

 ),exp()( pxxX −∝         ),exp()( p
yyY −∝      ),exp()( pzzZ −∝     

21 << p
.             (35) 

The plot of X(x) is shown in Fig.1. 

 
Fig.1 

The basic equation (32) can be reduced to the scalar equation [5-

7]  for the density of the space charge of the space charge of the 

bunch, which represents the particles: 

*
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  (36) 

Let us solve this equation together with the Poisson equation [5-

7]: 

πρϕ 4divgrad −=
 

We seek the solution in the form 

( ) ( ) ( )[ ]krtrFtr −−=Φ ωiexp,
_

                  (37) 

We get the following system of equations if the condition 

kc=ω  
is fulfilled: 
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where 
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is the electrical charge density. Let us suppose 
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System (38) can be expressed in dimensionless form: 

0)(
)(ln 22
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As long as potential 
ρ

with the accuracy up to an additive 

constant and its value does not affect the intensity of electrical 

field 
ϕgradE −=

, let us choose 
0=ϕ

. Due to the spherical 

symmetry in the center of the particle, the condition 0=E  is 

fulfilled. Solving numerically the Cauchy problem for the 

system (39), taking the value π16=K  and the initial 

conditions 

( ) 10 =f
,

( ) 00
' =f

, 
( ) 00 =ϕ

,
( ) 00

' =ϕ
                       (40)    

we obtain the following integrals 

2

0

22 1051372561.8)( −
∞

⋅== ∫ dxxfxIQ

; 9623876.137
12

=QI
  (41)                      

3

0

22
106857305.5)(

2

1 −
∞

⋅== ∫ dxxExIE

                                              (42)         

2

0

24 102493214.3)( −
∞

⋅== ∫ dxxfxI µ

                                    (43) 

The quantity QI
 is a dimensionless electrical charge, which is 

brought to the following dimensional form: 

CGSEIcQ Q

21078709.4 −⋅== �
 

This value is less than the modern experimental value of the 

electron's charge by only 0.3%.  This is a fairly accurate number 

for the first theoretical attempt of the charge calculation. The 

plot of f(x) is shown in Fig.1. 

 

Thus it is not unusual to bring out the “corrections” of the J. 

Schwinger type to the integral (41) 

2

2

32

105424692.8
648

−⋅=−+=
ππ
QQ

Qe

II
II

, 

which corresponds to the value of charge  

e = 4.803 2514 • 
10

10
−

 CGSE and the value of fine-structure 

constant 21/137.0355 ==α . Calculation spectrum masses all 

elementary particles see [10-12]. 

 

The quantization of the electrical charge and masses seems to be 

the consequence of the balance between the dispersion and 

nonlinearity, which determines stable solutions. 

 

The found density distribution for the particle's electrical charge 

allows us to determine the electrical form factor for the same 

particle 

[ ]∫ −=
V

dViqxxqF exp)()( ρ

                              (44) 

We regret that we have not succeeded in finding an analytical 

solution of eq. (39), but we are able to give a decent 

approximation. Let us look for a solution of eq. (39) in the form 

)(sech)( xRxf =
                                                             (45) 

Substituting eq. (45) into eq. (39) and taking into account that 

for small R we have  

RR ≈2sinh
2

1

 
 we obtain 

( ) 2'' 16 xRR π= ;  

2

3

8
xR

π
=

                      (46) 

2

3

8
sech)( xxf

π
=

                                     (47) 

It is interesting to note that if the particle’s 4-velocity is assumed 

to be zero at matrix  , then system (30) will reduce to eight 

similar Dirac equations. 

 However, this requirement is absolutely unsatisfactory both 

from the physical and the mathematical points of view. Four-

velocity has 4 components, of which three are usual components 

of the particle velocity along three axes, and they really can tend 

to zero. But the same cannot be done with the fourth component. 

Problems 
 Hence, this approach is formally incorrect and requires 

explanation. In our view, although the Dirac equation describes 

the hydrogen atom spectrum absolutely correctly, it is not 

properly a fundamental equation. It has two weak points: the 

correct magnitude of the velocity operator’s proper value is 

absent. It is known that in any problem of this type the proper 

value of the velocity operator is always equal to the velocity of 

light! In fact, Russian physicist and mathematician V.A.Fok 

regarded this as an essential defect of the Dirac theory. 

 The equations of the Unitary Quantum Theory we are 

proposing are more correct and fundamental. For this reason, a 

transition from correct fundamental equations to the 

incompletely accurate Dirac equation needs     such a strange 

requirement as 

  
0=µu

 
In the second paragraph of the preface of the book A History of 

the Theories of Aether and Electricity, by Sir Edmund T. 

Whittaker (Edinburgh, Scotland, April, 1951) was written the 

following:   

“A word might be said about the title ‘Aether and Electricity’. 

As everyone knows, the aether played a great part in the physics 

of the nineteenth century; but in the first decade of the twentieth, 

chiefly as a result of the failure of attempts to observe the 

Earth's motion relative to the aether, and the acceptance of the 

principle that such attempts must always fail, the word 'aether' 

fell out of favour, and it became customary to refer to the 

interplanetary spaces as 'vacuous'; the vacuum being conceived 

as mere emptiness, having no properties except that of 

propagating electromagnetic waves. But with the development of 

quantum electrodynamics, the vacuum has come to be regarded 

as the seat of 'zero-point' oscillations of the electromagnetic 

field, of the 'zero-point' fluctuations of electric charge and 

current, and of a 'polarization' corresponding to a dielectric 

constant different from unity. It seems absurd to retain the name 

'vacuum' for an entity so rich in physical properties, and the 

historical word 'aether' may be fitly retained.” Of course, now 

aether is not  old aether of the nineteenth century. 

The question is that the main relativistic relation between 

energy, impulse, and mass   

  
222

mPE +=                                               (48)     

has been still beyond any doubt.  In particular, all of the 

previous equations are based on relativistic invariance.  

Nevertheless, we shall ask ourselves once again about what is 

happening with that relation at the exact moment when the wave 

packet disappears being spread over the space.  At that moment 

the particle does not exist as a local formation.  This means that 

in the local sense there is no mass, local impulse, or energy.  The 
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particle in that case, within sufficiently small period of time, is 

essentially non-existent, for it does not interact with anything.  

Perhaps this is why the relation (48) is average and its use at the 

wavelength level is equal or less than the De Broglie 

wavelength, which is just illegal.  The direct experimental check 

of that relation at small distances and short intervals is hardly 

possible today.  If the relation (48) is declined, then it may result 

in an additional conservation of energy and impulse refusal; but, 

as we know, according to the Standard Quantum Theory, that 

relation may be broken within the limits of uncertainty relation. 

On the other hand, the Lorenz’s transformations have appeared 

when the transformation properties of Maxwell’s equations were 

analyzing. However electromagnetic waves derived from 

solutions of Maxwell’s equations move all in vacuum with the 

same velocity, i.e. are not subjected to dispersion and do not 

possess relativistic invariance.  Our partial waves, which form 

wave packet identified with a particle, possess always the linear 

dispersion. Under such circumstances, it would be quite freely 

for authors to spread the requirement of relativistic invariance to 

partial waves. Such requirement has sense in respect only to 

wave packet’s envelope, which appears if we observe a moving 

wave packet and his disappearance and reappearance. May be 

the origin of relativistic invariance would be connected in future 

with the fact that an envelope remains fixed in all inertial 

reference frames; only the wave’s length is changed. 

 It’s quite complicated [16,17]. The special relativity – is in 

fact Lorentz transformations (1904) derived by V.Vogt (1887) in 

the century before last. These transformations followed from the 

properties of Maxwell equations which are also proposed in the 

nineteenth century (1873). One of these equations connecting 

electrostatic field divergence and electric charge (Gauss' law of 

flux), in fact is just another mathematical notation of Coulomb's 

law for point charges. 

 But today anybody knows that Coulomb’s law is valid for 

fixed point charges only. If charges are frequently moving 

Coulomb’s law is not performed. Besides anybody knows that 

lasers beams are scattered in vacuum one over another, which is 

absolutely impossible in Maxwell equations. That means that 

Maxwell equations are approximate - and for the moving point 

charges experimental results essentially differs from the 

estimated ones in the case charges areas are overlapping. 

 Few people think about the shocking nonsense of presenting 

in any course of physics of point charge electric field in the form 

of a certain “sun” with field lines symmetrically coming from 

the point. But electric field – is a vector, and what for is it 

directed? The total sum of such vectors is null, isn’t it?       

 There are no attempts to talk about, but such idealization is 

not correct. We should note that Sir Isaak Newton did not used 

term of a point charge at all, but it’s ridiculous to think that such 

simple idea had not come to him! As for Einstein, he considered 

“electron is a stranger in electrodynamics”. Maxwell equations 

are not ultimate truth and so we should forget, disavow the 

common statement about relativist invariance requirement being 

obligatory “permission” for any future theory. 

  To reassure severe critics we should note that UQT is 

relativistically invariant, it allows to obtain correct correlation 

between an energy and impulse, mass increases with a rate, as 

for relativistic invariance just follow of the fact that the envelope 

of moving packet is quiet in any (including non-inertial) 

reference systems. To be honest we should note that subwaves 

the particles consist of are relativistically abnormal, at the same 

time envelope wave function following from their movement 

confirms terms of Lorentz transformations.   

 The success of Maxwell equations in description of the 

prior-quantum view of world was very impressing. Its 

correlation of the classical mechanics in forms of requirement to 

correspond Lorentz transformations was perfectly confirmed by 

the experiments that all these had resulted in unreasoned 

statement of Maxwell equations being an ultimate truth…  

 Other reasons for this were later very carefully investigated 

by a disciple of one of the authors (L.S.), Professor RatisYu.L. 

(S.Korolev Samara State Aero-Space University), who has 

formulated the modern spinor quantum electrodynamics from 

the UQT point of view: 

1. Maxwell equations contain constant c, which is interpreted as 

phase velocity of a plane electromagnetic wave in the vacuum.   

2. Michelson and Morley have never measured the dependence 

of the velocity of a plane electromagnetic wave in the vacuum 

on the reference system velocity as soon plane waves were 

mathematical abstraction and it was impossible to analyze their 

properties in the laboratory experiment in principle.  

3. Electromagnetic waves cannot exist in vacuum by definition. 

A spatial domain where an electromagnetic wave is spreading – 

is no longer a vacuum. Once electromagnetic field arises in 

some spatial region at the same moment such domain acquires 

new characteristic – it became a material media. And such media 

possesses special material attributes including power and 

impulse.     

4. Since electromagnetic wave while coming through the 

abstract vacuum (the mathematical vacuum) transforms it in a 

material media (physical vacuum) it will interact with this 

media.   

5. The result of the electromagnetic wave and physical vacuum 

interaction are compact wave packets, called photons.      

6. The group velocity of the wave packet (photon) spreading in 

the media with the normal dispersion is always less its phase 

velocity.     

All abovementioned allows making unambiguous conclusion: 

the main difficulties of the modern relativistic quantum theory of 

the field arise from deeply fallacious presuppositions in its base. 

The reason for this tragic global  error  was a  tripe substitution 

of ideas – velocity of electromagnetic wave packets ‘c’ being 

transformed in numerous experiments physics have construed as 

constant ‘c’ appearing in Maxwell equations and Lorentz 

transformations. Such blind admiration of Maxwell and Einstein 

geniuses (authors in no case do not doubt in the genius of these 

persons) had led XX century physics up a blind alley. The way 

out was in the necessity of revision of the entire fundamental 

postulates underlying the modern physics. Exactly that was done 

by UUQFT [14].      

 Some time ago CERN has conducted repeated experiments 

of the neutrino velocity measurement that appeared to be higher 

than velocity of the light.  For UUQFT they were like a balm 

into the wounds. In fact the movements in excess of the light 

velocity were discovered earlier by numerous groups of 

researches. The most interesting were experiments of [19] 

(Princeton, USA), they had disclosed velocities 310 times higher 

than the light. Nearly everybody disbelieved it. And now the 

neutrino movements exceeding the velocity of the light were 

disclosed in CERN. The importance of these experiments for 

UUQFT is settled in the article [12-14] where at the page 69 it is 

written that “this should be considered as direct experimental 

proof of UUQFT principle”. 
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