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ABSTRACT

The present article discuses the problems of relativistic invariance and commutation
relations at unitary quantum theory. The scalar analogue of the main (principal) equation of
the unitary quantum theory together with the Poisson equation are solved numerically in
this paper. The value of the electrical charge and also
found, which are in good agreement with the experiment. The evaluation of the

the fine-structure constant, are

electrical form factor end the mass of such a particle is also carried out.

Keywords

Unitary Quantum Theory,
Commutation Relation,
Relativistic Invariance,
Lorentz transformations,
Alternion.

Introduction

The previous investigations [1-4] have suggested a model of
the unitary field theory where a particle with mass m is
described by the equation

o 0D
i —-mdP=0
ox* (1
and each component ~ 5of the wave function satisfies the

second order equation

2
utu” 97D, +m2CI>S =0
oxHoxV )

s

. . . H
so that the commutation relations for matrices A have the form

uqv Vol _ A v
MU+ XA =2g"1 3

1 v
x* = (t,x);u'u = (_9_)
where

M,V = 0,1,2,3.

; a metrics with signature (+,-,-,-) is used; ¢ and
h equal 1, and repeated indices are assumed to be summed.
Common approach

For equation (1) to be the starting point of the theory, the
equation should first result in the correct energy-momentum
relation for a free particle and then be the Lorentz covariant.
Equation (2) meets the former condition in the form

() =m?

Matrices are functions of the particle velocity, and thus the
commutation relations (3) alone are insufficient for proving
invariance of eq. (1) under the Lorentz transformations;
therefore let us first specify the functional dependence of the
matrices on the velocity. Since the trivial solution

A =ul

is the particle velocity;
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is totally uninteresting, let us consider the case of linear
dependence on the velocity
M _ Juo Ha
M= + A @
uo y7z
where A and A are numerical matrices. The condition (3)
holds identically if

l,uo‘ﬂvr +ﬂvfﬂ[uo’ — 2(g/4rgvo' _gﬂo’gvr)l
/1/14/11/4 + ﬂV4ﬂﬂ4 — 2g,uv1
X+ 7 =0

B . L
ecause of the antisymmetry of , only ten out of
the twenty matrices are independent quantities. These matrices
mutually anticommute, the square of four of them is equal to
unity and that of six, to minus unity. To put it differently, eq.
4
(5) is specified by ten generatrices of the alternion algebra Ay ,
which is isomorphous with the algebra of the sixteenth order
quaternion matrices [Zaitsev,1974].  Since they are not
convenient, let us replace the quaternion matrices with ten
complex, irreducible, unitary 32" order matrices
) = ()" ) =)
; (6)
This situation arises in construction of Dirac matrices, which are
usually chosen as complex fourth order matrices even though the
equation
Yyt vyt =2¢"1

is satisfied by four second—order quaternion matrices.

(&)

From eqs. (5) and (6) it follows that four matrices are Hermitian
and six are anti-Hermitian

( oa )+ _ o ( et )+ -

ab=1234 @)

If a

matrix A is introduced
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A — 112113114123124134 ,A+ — A71 — —A (8)

then the Hermitian conjugations conditions (7) can be
rearranged into

A7) = AAP N

(#) (9)

Represented in the form (5) the commutation relations are
unwieldy and inconvenient in proving the relativistic invariance;
however, they can be represented in a simpler form. Let us

define a symmetrical tensor Eap

80 =811 ="8n =783 ="8u=1

=0
Sap i a*h (10)
henceforth subscripts of initial letters of the Greek alphabet

& 'B 275 J take on values from O to 4 while those of the middle
af

of the alphabet from O to 3. The inverse tensor 8

compact restatement of commutation relation (5)

ﬂaﬂﬂ,}/g +l}/§ﬂ’aﬂ zz(gaﬁgﬁy_gaygﬂﬁ)l (11)

Egs. (4), (10) and (11) make it possible to prove the relativistic
invariance of eq. (1) by using a five-dimensional group of
transformations of coordinate O (4,1). For this purpose extend
eq. (1) to the case of a five-dimensional pseudo-Euclidian space
with a metric tensor (10)

iﬂ“ﬁuaa—q;—mcb =0
ox (12)
a
(where u® s the 5-velocity, Wity = 0) and then prove
invariance of this equation under the group of five-dimensional
transformation O(4,1), which contains the Lorentz group as a
subgroup. Under reduction of O (4,1) to the Lorentz group, we

851

assume that ¥ ‘= Const,u t=1 and ox* then we have
eq. (1); in other words, one can assume that eq. (1) is invariant
under five-dimensional transformations, but the physical
solution does not depend on the fifth coordinate. Incidentally,
eq. (12) can be interpreted differently, but we will not discuss
these possibilities, for using the five dimensions is merely a
convenient tool, which enables us to make full use of simplicity
of the commutation relations (11).

To prove invariance of the equation, it is sufficient to show [20]
that for any transformation of coordinates

() =agx’

il

provides a

a) .

X )x =1inv
( o (13)
there is a linear transformation S(a) of wave functions, the

primed and unprimed reference frame

@ (x)=s(akol),
CI)(x)=S’1(a)CI>'(x') (14)

and N (x ) is a solution of the equation, which has the form of
eq. (12) in the primed reference frame

- a -
iAYeu,, —-m|® (x| =0
a(x?) (15)

Substitute (14) into (12); multiply the left-hand side by S(a),
and use the definition (13) to have
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. - .0 o
iSAPS alagu, ——~—m|® (x ): 0
5
o)
This equation coincides with (15), if the matrix has the property
4 JSﬂaﬁS_l — ﬂ;«?
aaaﬁ (16)
Construct S for the infinitesimal proper transformation of the
group O (4,1)

af =55 veb

s

aaﬂ = gaﬂ + gaﬂ (17)
with

Expand S in power of € and keep only linear terms

S=1-Lg% Eu
4 (19)
off _ Po
where O =0 by eq. (18). Substitute eqs. (17)-(19) into
eq. (16), keep first-order terms in 2 , use the notation
[B,C]=BC-CB for the commutation brackets and have

o™ H0|= g W7 — g P+ PT — PR
b
The antisymmetric solution of this equation

o =2 gl 2]
(20)

is, by virtue of diagonality of the metric tensor and

af
antisymmetry of A , a sum of mutually commutating terms; in

12

particular, O " has the form

(712 — 120110 _ 223213 _ 124214

According to eq. (19) S for an infinitesimal transformation is
given by

! .
S =1 8 7 47

Hence, for rotation through a finite angle @ about this axis in
the direction labeled n is represented as

1 n
S :exp{——a)a”’ﬁ aﬂ}
4 @1
where B is the generator of rotation about this axis. The
matrix S is not, generally speaking, unitary but formula (9)
easily shows that

AN'o"A=-0,
consequently, for proper transformations
A'STA=S"" 22)

Let us consider improper transformations of space reflection and
time reversal. For space reflection the matrix a is diagonal

ajy=a; =—a, =—a; =—a; =1

then eq. (16) for the space reflection operator P is satisfied by
P= 2{014024034142{242{34 — P+ — P—l (23)

which ensures invariance of both eq. (1) and eq. (12). Construct

a transformation of the time inversion; for this purpose introduce
an interaction of a particle whose charge is e with an external
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At = ((D’Ak )

electromagnetic field
invariant substitution

by means of the gauge

= =i —eA,
ox* ox*
and rewrite eq. (1) in the form [2,3,5]:

i/?f)f :{ﬂf(—i; +eAkJ+m+e(p//l)}CI>:H®

Determine
transformation T as such that if
r= _t’ch = (t ): T(I)(t); then the latter equation
becomes

—(rirT™ )%[,(t') = (T )0’ ()
When the sense of time is reserved
uy =ugsu, =—u, ;& =P;A* =-A"

and, before all, it is necessary to change the sign between two

)

| —
k A Lo
terms ox and € ; therefore the transformation is regarded
as a complex conjugation operator multiplied by the matrix 7:

O, =Td(t)=Td" (¢)

(24)
This gives
pri e P2
or
« k a ) 0 o
={—(TA T -i €A, +m+e¢[T/1 T‘J ®(r)
B(xk)

and for invariance of the equation it is necessary that
(K K2 k4 04
TAT'=ATAT'PTAT'=HTAT' =L o5

e -1
Thence it immediately follows that I =T"=T , though the
explicit form of the matrix 7 depends on the particular

af
representation of the matrix A . Note that there is just one
matrix

A=T]

a<f
a

which commutes with both generators O for the
representation of the group O (4,1) and with the operators of
discrete transformation P and 7. Under reduction of O (4,1) to
the Lorentz group two more matrices

A, =BG, = AA,

are generated which commute with the generators o’ of the
representation of the Lorentz group and anticommute with P and
T. Consequently, formulae (21), (23)-(25) specify the reducible
representation of the Lorentz group and this representation is
double-valued. Indeed, consider a particular case, rotation
through angle @ about the Z-axis. In this case
Pé =-P 221 =1

12
: using the explicit form of O we have
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S =exp —90"2 =cos’ @ + 0" cos® @ sin @ +
2 2 2 2
3+(c") (w] 7(64)]
+ ———%-cos | — |sin | — |+
2 2 2
@

+/12(1110/123113124114 Sil’l 3(2_j

The half-angle is an expression of the double value of the wave
function transformation. Therefore the observables in the theory

<I>(x)

should be bilinear in . The matrix /A makes it possible to

X +
determine the adjoint wave function P=P A, which is a
solution of the adjoint equation

i o® A +md=0
ox*

An adjoint wave function under an arbitrary transformation of
the co-ordinates should be transformed by the equation

g = A-lg+
D =PAS'A which for proper rotations (22) leads to

- - B
P =PS , for space and time inversions Ppr=—DP 44

— *

' - _1
P =-D 7T respectively. The adjoint wave function and

A, A A

2 make it possible to construct four

D D; D AD; DA Dy

the matrices I and

independent scalar functions and

@ A2q) , which under
transformed as

space and time inversions are

D, 0, =-0d O, D, =0d

(26a)
D, I, =— AP D, AP, =—DAD 5
&, AD, =DAD D, AP, =——DAD 260)
B, AD, =PAD D, A,D, =DA,D 60

Following the classification of Ref. [18,20], the quantities (26a-
d) are singular and simple pseudo-scalar and singular and simple
scalar, respectively, each of these functions being a unique

scalar function of the associated type, quadratic in <I)(x)' To
obtain a numerical scalar let us use a representation of the

function CI)(x) as a four-dimensional Fourier integral. Since

each component of CI)(x) satisfies the second order equation (2),
the general solution represented entirely in relativistic terms has
the form

Bx)=—2 2 [d'ke™ é{(kﬂu")z —mz}cb(k)

(275)% 27

where

ke f - = ol - ol e+
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is the relativistic o -function and the amplitude
_ 0
q)(k) q)(k k) satisfies the equation
u 2
Wk, +mppk)=0 (k) =m

Because the integrand includes a o -function, the integration is
performed over just two Lorentz-invariant hyper surfaces

k,u" =tm

“ , rather than the entire four-dimensional k-
space. This allows for decomposing the integral (27) into two
summands

CI>(x):<I>i(x)+<I>_(x);
(k u* im) .
(271'/2 2m CP( ) 28)

Using this representation and integrating over the three-
dimensional volume, we have

o* (x)= [d'k

J‘cp aq)d_V:_J' aq)cpd_V:

- i% [a*k(k,u 5 m)o (k) (k)

J"q;tuﬂ aCIDﬂ dl:J'uu 0P q)idl:
ox 4

+ _
—+—J.dkex [ szoqu)(ku;m7qu)[kutmvkj
u u u

Combining these relations and usmg the equallty

(ku—)ﬁ(ku+m ku 5{(/{14 - }

that
0P u 0P o av _

we find

ox* ! ox* 7
if "kl " )é‘{(kﬂu”)z —m? }ci>(k)c1>(k)

where
L,if ku>0

Oku)=1 """
—Lif ku<0

The right-hand side of eq. (29) is explicitly represented in
covariant form, which facilitates a study of properties, which can
be traced to the space and time inversions. More specifically,

J'...d“k
eq. (29) is a simple pseudo-scalar because
2 2
5{(]{,}4") —-m } G(kﬂu”)

scalar, (6 is an odd function and k* and u” are simple and

J-<i>u”

29

and

are simple scalars, is a singular

singular vectors, respectively), and CI)(k)(ID(k) is a singular
pseudo-scalar, according to the definition (27) and eq. (26a). It is
easy to construct a simple scalar
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J' d_DAlu”ag— 87<I>A<D av

ox* ox* ¥
which can, following [2,3], be interpreted as the particle mass
while the nonlinear equation [4-7] is represented as follows:

~of| ®Au w90 aq)A(ID YV _o 3o
ox* ox* ¥
Unfortunately, the authors can only look at this fundamental (in
our view) equation. It appears that any further progress in
finding a solution to such an equation will be achieved with the
help of computers and future symbol mathematics programs (of
the Maple-16, Mathematica-9 types, etc.). For this purpose
equation (30) should have a form with a clear matrix
appearance. It is well known that the solution will not depend
. N Y, G
on a concrete representation of matrices ¥ , it is only
important that the commutations relations were satisfied. By the
way, the latter can be checked by direct finding of commutators
and anticommutators with apparent matrix representation. Let
us note that the authors of [4-7] had received these results long
before the epoch of personal computers and symbol math
programs. When these things appeared, the first thing the
authors did was to check the correctness of matrix correlations
of the size 32x32!
In order to receive a concrete appearance of all the matrices, let
us apply the bloc ideas. For this purpose, let us write down the
basic matrices

70,71,72,7/3,8”V,Z,i

1 0 0 0 [0 o0 0 1

0 1 0 0 0 0 1 0
¥0 = ¥l=

0 0 -1 0 0 -1 0 0

00 0 -1 -1 0 0 0

0 0 0 - [0 0o 0 D

0 0 7 0 0 0 0 0
Y2 = =

0 /7 0 0 0 0 0 0

-7 0 0 0 Lo 0 0 D

For these matrices the following standard commutation relations
are correct:

vyt vyt =2g"" #v=0123.

where 4:V>0,7=0,1,23.4 . &=+———

From these basic matrices 10 supplementary bloc matrices can
01 902 403 404 412 413 g4 223 224 934

be constructed - A ’/1 ’/1 ’ﬂ’ ’ﬂ’ ’/1 ’/1 ’ﬂ’ ’ﬂ’ ’/1 s

which have a clear appearance:

i =z = =z =z = = =z
= S = = = = = =
= = i = = = = =
= = = S = = = =
A0l =
= = = = —z = = =
= = = = = —i = =
= = = = = = —i =
= = = = = = = —z
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Z Z Z Zz Z Z Z =
lz =z =z =z : =Z Zz Z] T T
Z Zz £ E E =
i zZ z z Zz Z - Z =Z
Z Zz = Z = Z
= =z = = H = = =
oz |2 2 2 E Z 2 Z = A2 = _
i z =z =z =z z =z =z £ £ £ == £ 2 Z Z
Z i Z £ Z Z EZ E £ £ i £ 2 £z =z Z
zZ £ — Z g £ £ Z £ - 2 Z  Z Z  Z  Z
L= = = -3 Z Z = = | L # e = = = = £ =
_ _ [z =z =z =z =z =z —= Z|
Z 2 Z Z Z Z i =Z
zZ z Z £ EZ E E —i
zZ =z =z Z Z Z Z - :
s = oz oz i oz oz = zZ Zz Z £ i EZ E Z
s |Z 2 2 2 2 oz 2 S Z_ £ £z = £ =z
z =z i+ =z zZ Z =2 =z £ £ -+ Zz =z 2 Z =
Z £ EZ - Z £ 2 Z Z £ Z = Z Z Z Z
i s £ Z zF z = = i = e = =z = = e
lz — =z =z =z =z =2 =z lz : =z =z = =z =z Z/
_ _ [z =z =2 =2 — =2 £ Z
2 2 2 2 2 2 2 W zZ Z ® £ Z — E E
S T A zZ % % E EZ E =z
z =z =z z Z w0 Z Z i _
oa |z 2 2 2 w0z 2z 2 s — Z zZ =z E Z £z Z —
z z z w0 2z zZ 2 z i £ = Z E £ 2 Z
z z w =z 2 z =z =z Z i % EZ EZ % E E
Z 0 = = = = = = = = i = = = = =
L0 = =z = =z = = = | L= = = i = = = =
1 v
- u” = wO0,ul,u2,u3)=(—;—)
Z =z =z =z Z Z ) ) vy A
s 2 = oz oz oz o = Let us define four-velocity
¥ The matrices in the main equation (30) will be defined as:
s 2 s s om oo s 2 =04+ 2ul + Ru2 + Fou3+ 2
z £z z z w1 z =z = =U+Aul+Aus+Aus+
12 = 1 01 12 13 14
Z =2 Z v 2 2 Z E A=A u0+0+ A u2+A°u3+ 4
2 02 21 23 24
z zm z z £ z Z A=2u0+Aul+0+ A" u3+ 4
Z v Z = =z Zz =z Z 2= 2500+ Aul+ Pu2+0+ 1
wio2 2oz o2 2 & 2 The equation then will look as follows:
a<I> ob ;0P
] ] /? +/?£ +A— |[-mP=0
z =Z £ =Z £ Z E -2 ax2 o a1
= = = = = = w2 = . . . .
PR B B N The mass term of this equation will then be defined by the
following correlation:
1 = = = = w2 = = =
z z z w2 = = = = = J‘ A u” _M,, oP* o av
2
z =z 2 £ £ 2 E E ox* Y
= = = = = = = -
2 (b—q)+[\ A:)LO4214224234
lva =z =z =z =z =z =z =zJ because = ; ! ;
_ 712 913 714 123 224 134 —
[z =z =z = =z =z = 3] A=A VXXX ;AZ AAl
A ! The explicit form of 4 matrices # dependi Joci
P e explicit form of 4 matrices epending on velocity, as
aa<|> £ £ = v =2 = = well as of numerical matrices A2 of the size 32x32.
i i 23 ;3 i i i i Using a good personal computer it is possible to prove the
[ ; s = = = = correctness of the correlations in (5) by making direct
it . . .
computations of the commutators and anticommutators with the
w3 = = = = = = = |

help of symbol mathematics programs (Maple -16, Mathematica
-9).
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Solve equations

The attempts to solve equation of the (30), (31) type gave no
result. However, [8-10] an interesting was found for a modified
scalar version of the integro-differential equation (30), which
may be written down as follows:

0 9 9 0
— D (x,y,2,1)=-2iP(x,y,2,1)*
[Bt " 8y+8] (x,y,2,t) ==2i®(x,y,2.1)

y

(32

000 at

seek the solution of this equation in the form

D(x,y,z,t) = F(x,y,2)expi(at —kx—ky—kz))

F(x,y,2)=X(x)Y(¥)Z(z)
and @,k

%

—

We will

where

are some constant parameters. Substituting these

expressions in (32), we obtain under condition @ =3k
following equation w.r.t X,Y,Z:

X', Y'O), 2@ _
X@ YO) Z()

- ij;Xz(x)dx-J};Yz(y)dy-iZz(z)dZ

Differentiating the left-hand and right-hand sides w.r.t. X,y,z
successively, we obtain three

X(x),Y(y),Z(2):
(X(x)j =—2wX2(x)]VY2( y)dyfzz(z)dz
X (x) 0 0

[Y'()’)J _ _2wY2(y)]’CX2(x)dx . sz(z)dz,
Y(y) 0 0

equations for

(33)

(Z'(Z)J — _szZ(Z)TXZ(x)dX‘ TY2(y)dy
Z(2) 0 0 Putting

x y Z
U =[x2wdx, YO = (Y2(yp)dy W(2)=[Z%(2)dz,
0 0 0

we obtain the system of ordinary differential equations for

X(x),Y(y),..W(z):

X' 2
X'—=2 = 2@ VWU (x) = X2 (%),
) 3 2
Y'——=20Y"UW,V'(y)=Y"(y),
Y (34)
@) 3 >
7'——==2a"UV,W' (2)=Z°(2).
Z(z)
Further, we have put the numerical value of & , namely,
1
T2 and integrated numerically

(with the help of Maple-16) this system under following initial
conditions (reasonable from physical point of view):
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X0)=Y0)=Z0)=.,X'0)=Y'0)=Z2'0)=U0)=V(0)=W(0) =
According to obtained solution X(x), Y(y), Z(z) are identical
rapidly decreasing functions of following type:

X (x) o< exp(—xP),
l<p<2

Z(z) o< exp(—z¥),
(35)

Y(y) o< exp(-y?),

The plot of X(x) is shown in Fig.1.

Fig.1
The basic equation (32) can be reduced to the scalar equation [5-
7] for the density of the space charge of the space charge of the
bunch, which represents the particles:
10®(r,1) + oD (r,1) + 47 (r,1) .
c ot or h

f{q’( )ad>(st) aq)(st)q)( t)}QdSZO

0

(36)

Let us solve this equation together with the Poisson equation [5-
7]:

divgrad ¢ = —47mp

We seek the solution in the form

<I>(r,t)= I_f“(r)exp[—i(a)t—kr)] 37)
We get the following system of equations if the condition
w=kc

is fulfilled:
- - r 2
dF(r) N 8w F (r) J.Sz F (s)ds =0
dr 0
2 3 2
& i) 2@ _—4;zp(r)=—1\FF ")
dr2 r dr 2V h , (38)
where
1| -
ry=—-:|—F(r
p(r) 87:\/: (r)
is the electrical charge density. Let us suppose
F(r
X = L f(x) = _( ) B
R F@) F(0)#e
2 h - .
p(x):—\/:3¢(r) P 87wR* F (0)
RPF(0) '€ Tk

System (38) can be expressed in dimensionless form:
d’In f(x

dx’ (39)

d’p(x) , 2dp(x) _
dx® x dx

-f*(x)
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As long as potential p with the accuracy up to an additive
constant and its value does not affect the intensity of electrical

field E=-g rad(p , let us choose = 0 . Due to the spherical

symmetry in the center of the particle, the condition E=0 is
fulfilled. Solving numerically the Cauchy problem for the

system (39), taking the value K =167 and the initial
conditions

£0)=11'0)=0 ¢(0)=0 ¢(0)=0 o)

we obtain the following integrals

oo

1, =Ixzfz(x)dx=8.51372561-10’2 L
0 ;e _%37.9623876 41)

I, = 1 j **E*(x)dx =5.6857305-107
x 42)

1,= jx4f2(x)dx =3.2493214-107
0 (43)

I
The quantity € is a dimensionless electrical charge, which is
brought to the following dimensional form:

Q =+hcl, =4.78709-10° CGSE

This value is less than the modern experimental value of the
electron's charge by only 0.3%. This is a fairly accurate number
for the first theoretical attempt of the charge calculation. The
plot of f{x) is shown in Fig.1.

Thus it is not unusual to bring out the “corrections” of the J.

Schwinger type to the integral (41)
2 3

IQ IQ )
+—=——5=28.5424692-10
87 64rx

which corresponds to the value of charge
-10
e = 4.803 2514 « 10

constant @ ==1/137.03552 _ calculation spectrum masses all
elementary particles see [10-12].

e 0

bl

CGSE and the value of fine-structure

The quantization of the electrical charge and masses seems to be
the consequence of the balance between the dispersion and
nonlinearity, which determines stable solutions.

The found density distribution for the particle's electrical charge
allows us to determine the electrical form factor for the same
particle

F(g)= [ p(x)expl-igxlav
v (44)
We regret that we have not succeeded in finding an analytical
solution of eq. (39), but we are able to give a decent
approximation. Let us look for a solution of eq. (39) in the form

f(x)=sechR(x) (45)

Substituting eq. (45) into eq. (39) and taking into account that
for small R we have

lsinh 2R=R
2

we obtain
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8
(kR) =16m’, R:\Exz (46)

f(x)=sech \/gxz
3 7

It is interesting to note that if the particle’s 4-velocity is assumed

to be zero at matrix /A | then system (30) will reduce to eight
similar Dirac equations.

However, this requirement is absolutely unsatisfactory both
from the physical and the mathematical points of view. Four-
velocity has 4 components, of which three are usual components
of the particle velocity along three axes, and they really can tend
to zero. But the same cannot be done with the fourth component.
Problems

Hence, this approach is formally incorrect and requires
explanation. In our view, although the Dirac equation describes
the hydrogen atom spectrum absolutely correctly, it is not
properly a fundamental equation. It has two weak points: the
correct magnitude of the velocity operator’s proper value is
absent. It is known that in any problem of this type the proper
value of the velocity operator is always equal to the velocity of
light! In fact, Russian physicist and mathematician V.A.Fok
regarded this as an essential defect of the Dirac theory.

The equations of the Unitary Quantum Theory we are
proposing are more correct and fundamental. For this reason, a
transition from correct fundamental equations to the
incompletely accurate Dirac equation needs such a strange
requirement as

u, =0
In the second paragraph of the preface of the book A History of
the Theories of Aether and Electricity, by Sir Edmund T.
Whittaker (Edinburgh, Scotland, April, 1951) was written the
following:
“A word might be said about the title ‘Aether and Electricity’.
As everyone knows, the aether played a great part in the physics
of the nineteenth century; but in the first decade of the twentieth,
chiefly as a result of the failure of attempts to observe the
Earth's motion relative to the aether, and the acceptance of the
principle that such attempts must always fail, the word 'aether’
fell out of favour, and it became customary to refer to the
interplanetary spaces as 'vacuous'; the vacuum being conceived
as mere emptiness, having no properties except that of
propagating electromagnetic waves. But with the development of
quantum electrodynamics, the vacuum has come to be regarded
as the seat of 'zero-point' oscillations of the electromagnetic
field, of the 'zero-point' fluctuations of electric charge and
current, and of a 'polarization’ corresponding to a dielectric
constant different from unity. It seems absurd to retain the name
'vacuum' for an entity so rich in physical properties, and the
historical word 'aether’ may be fitly retained.” Of course, now
aether is not old aether of the nineteenth century.
The question is that the main relativistic relation between
energy, impulse, and mass

E*=P*+m? (48)
has been still beyond any doubt. In particular, all of the
previous equations are based on relativistic invariance.
Nevertheless, we shall ask ourselves once again about what is
happening with that relation at the exact moment when the wave
packet disappears being spread over the space. At that moment
the particle does not exist as a local formation. This means that
in the local sense there is no mass, local impulse, or energy. The
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particle in that case, within sufficiently small period of time, is
essentially non-existent, for it does not interact with anything.
Perhaps this is why the relation (48) is average and its use at the
wavelength level is equal or less than the De Broglie
wavelength, which is just illegal. The direct experimental check
of that relation at small distances and short intervals is hardly
possible today. If the relation (48) is declined, then it may result
in an additional conservation of energy and impulse refusal; but,
as we know, according to the Standard Quantum Theory, that
relation may be broken within the limits of uncertainty relation.
On the other hand, the Lorenz’s transformations have appeared
when the transformation properties of Maxwell’s equations were
analyzing. However -electromagnetic waves derived from
solutions of Maxwell’s equations move all in vacuum with the
same velocity, i.e. are not subjected to dispersion and do not
possess relativistic invariance. Our partial waves, which form
wave packet identified with a particle, possess always the linear
dispersion. Under such circumstances, it would be quite freely
for authors to spread the requirement of relativistic invariance to
partial waves. Such requirement has sense in respect only to
wave packet’s envelope, which appears if we observe a moving
wave packet and his disappearance and reappearance. May be
the origin of relativistic invariance would be connected in future
with the fact that an envelope remains fixed in all inertial
reference frames; only the wave’s length is changed.

It’s quite complicated [16,17]. The special relativity — is in
fact Lorentz transformations (1904) derived by V.Vogt (1887) in
the century before last. These transformations followed from the
properties of Maxwell equations which are also proposed in the
nineteenth century (1873). One of these equations connecting
electrostatic field divergence and electric charge (Gauss' law of
flux), in fact is just another mathematical notation of Coulomb's
law for point charges.

But today anybody knows that Coulomb’s law is valid for
fixed point charges only. If charges are frequently moving
Coulomb’s law is not performed. Besides anybody knows that
lasers beams are scattered in vacuum one over another, which is
absolutely impossible in Maxwell equations. That means that
Maxwell equations are approximate - and for the moving point
charges experimental results essentially differs from the
estimated ones in the case charges areas are overlapping.

Few people think about the shocking nonsense of presenting
in any course of physics of point charge electric field in the form
of a certain “sun” with field lines symmetrically coming from
the point. But electric field — is a vector, and what for is it
directed? The total sum of such vectors is null, isn’t it?

There are no attempts to talk about, but such idealization is
not correct. We should note that Sir Isaak Newton did not used
term of a point charge at all, but it’s ridiculous to think that such
simple idea had not come to him! As for Einstein, he considered
“electron is a stranger in electrodynamics”. Maxwell equations
are not ultimate truth and so we should forget, disavow the
common statement about relativist invariance requirement being
obligatory “permission” for any future theory.

To reassure severe critics we should note that UQT is
relativistically invariant, it allows to obtain correct correlation
between an energy and impulse, mass increases with a rate, as
for relativistic invariance just follow of the fact that the envelope
of moving packet is quiet in any (including non-inertial)
reference systems. To be honest we should note that subwaves
the particles consist of are relativistically abnormal, at the same
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time envelope wave function following from their movement
confirms terms of Lorentz transformations.

The success of Maxwell equations in description of the
prior-quantum view of world was very impressing. Its
correlation of the classical mechanics in forms of requirement to
correspond Lorentz transformations was perfectly confirmed by
the experiments that all these had resulted in unreasoned
statement of Maxwell equations being an ultimate truth...

Other reasons for this were later very carefully investigated
by a disciple of one of the authors (L.S.), Professor RatisYu.L.
(S.Korolev Samara State Aero-Space University), who has
formulated the modern spinor quantum electrodynamics from
the UQT point of view:

1. Maxwell equations contain constant ¢, which is interpreted as
phase velocity of a plane electromagnetic wave in the vacuum.

2. Michelson and Morley have never measured the dependence
of the velocity of a plane electromagnetic wave in the vacuum
on the reference system velocity as soon plane waves were
mathematical abstraction and it was impossible to analyze their
properties in the laboratory experiment in principle.

3. Electromagnetic waves cannot exist in vacuum by definition.
A spatial domain where an electromagnetic wave is spreading —
is no longer a vacuum. Once electromagnetic field arises in
some spatial region at the same moment such domain acquires
new characteristic — it became a material media. And such media
possesses special material attributes including power and
impulse.

4. Since electromagnetic wave while coming through the
abstract vacuum (the mathematical vacuum) transforms it in a
material media (physical vacuum) it will interact with this
media.

5. The result of the electromagnetic wave and physical vacuum
interaction are compact wave packets, called photons.

6. The group velocity of the wave packet (photon) spreading in
the media with the normal dispersion is always less its phase
velocity.

All abovementioned allows making unambiguous conclusion:
the main difficulties of the modern relativistic quantum theory of
the field arise from deeply fallacious presuppositions in its base.
The reason for this tragic global error was a tripe substitution
of ideas — velocity of electromagnetic wave packets ‘c’ being
transformed in numerous experiments physics have construed as
constant ‘c’ appearing in Maxwell equations and Lorentz
transformations. Such blind admiration of Maxwell and Einstein
geniuses (authors in no case do not doubt in the genius of these
persons) had led XX century physics up a blind alley. The way
out was in the necessity of revision of the entire fundamental
postulates underlying the modern physics. Exactly that was done
by UUQFT [14].

Some time ago CERN has conducted repeated experiments
of the neutrino velocity measurement that appeared to be higher
than velocity of the light. For UUQFT they were like a balm
into the wounds. In fact the movements in excess of the light
velocity were discovered earlier by numerous groups of
researches. The most interesting were experiments of [19]
(Princeton, USA), they had disclosed velocities 310 times higher
than the light. Nearly everybody disbelieved it. And now the
neutrino movements exceeding the velocity of the light were
disclosed in CERN. The importance of these experiments for
UUQEFT is settled in the article [12-14] where at the page 69 it is
written that “this should be considered as direct experimental
proof of UUQFT principle”.
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