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Abstract

The present article discusses the problems of relativistic invariance and commutation relations at unitary
guantum theory. The scalar analogue of the main (principa) equation of the unitary quantum theory together
with the Poisson equation are solved numericaly in this paper. The value of the fine-structure constant, are
found, which are in good agreement with the experiment. The evaluation of the electrical form factor of such a
particleis also carried out.
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1. Introduction

In the standard quantum theory, a micro-particle is described with the help of a wave function with a
probabilistic interpretation. This does not follow from the strict mathematical formalism of the nonrelativistic
quantum theory, but is simply postulated. A particle is represented as a point that is the source of a field, but
can not be reduced to the field itself and nothing can be said about its “structure” except with these vague
words. Modern quantum field theory can not even formulate the problem of finding a mass spectrum.

This dualism is absolutely not satisfactory as the two substances have been introduced, that is, both the points
and the fields. Presence of both points and fields at the same time is not satisfactory from general philosophical
positions — “razors of Ockama”. Besides that, the presence of the points leads to non-convergences, which are
eiminated by various methods, including the introduction of a re-normalization group that is declined by many
mathematicians and physicists, for example, P.A.M. Dirac.

The origina idea of Schroedinger was to represent a particle as a wave packet of de Broglie waves. As he wrote
in one of his letters, he “was happy for three months” before British mathematician Darwin showed that such
packet quickly and steadily dissipates and disappears. So, it turned out that this beautiful and unique idea to
represent a particle as a portion of afield is not realizable in the context of wave packets of de Broglie waves.
Later, de Broglie tried to save this idea by introducing nonlinearity for the rest of his life, but wasn’t able to
obtain significant results. It was proved (Lyamov et a., 1969) that every wave packet constructed from de
Broglie waves with the spectrum a(k) satisfying the condition of Viner-Pely (the condition for the existence of

localized wave packets)
°‘j- In(a(k) >0
21+ k?

becomes blurred in every case.

There is a school in physics, going back to William Clifford, Albert Einstein, Erwin Schrodinger and Louis de
Broglie, where a particle is represented as a cluster or packet of wavesin a certain unified field. According to M.
Jemer’s classification, this is a ‘unitary’ approach. The essence of this paradigm is clearly expressed by Albert
Einstein’s own words. “We could regard substance as those areas of space where a field isimmense. From this
point of view, a thrown stone is an area of immense field intensity moving at the stone’s speed. In such new


http://dx.doi.org/10.5539/

WWW.CCSenet.org/apr Applied Physics Research Vol. 5, No. 3; 2013

physics there would be no place for substance and field, since field would be the only reality . . . and the laws of
movement would automatically ensue from the laws of field.”

However, its realization appeared to be possible only in the context of the Unitary Quantum Theory (UQT)
within last two decades. It isimpressive, that the problem of mass spectrum has been reduced to exact analytical
solution of a nonlinear integro-differential equation. In UQT the quantization of particles on masses appears as a
subtle consequence of a balance between dispersion and nonlinearity, and the particle represents something like
avery little water-ball, the contour of which isthe density of energy (Sapogin et al., 2008a, 2008b, 2010a).

Following, in essence, this general idea, the Unitary Quantum Theory (UQT) represents a particle as a bunched
field (cluster) or a packet of partial waves with linear dispersion, and the particle is identified with some field.
Dispersion is chosen in such away that the wave packet would periodically disappear and appear in movement,
and the envelope of the process would coincide with de Broglie wave (Sapogin, 1973, 1979, 1980).

2. Common Approach

Based on this idea, the relativistic-invariant model of such unitary quantum field theory was built (Sapogin,
1973, 1979, 1980): amodel of the unitary field theory where a particle with mass mis described by the equation

292 _mp -0 )
ox*
and each component @, of the wave function satisfies the second order egquation
2
u“u” oD, +mPo, =0, 2
ox*ox”

so that the commutation relations for matrices A* have the form

A+ A A =2 ©)

where x* = (t,x);u” = (l,l) is the particle velocity; u,v =0,1,2,3; a metrics with signature (+,-,-,-) is used;
ry

c and h equal 1, and repeated indices are assumed to be summed.
2.1 The Commutation Relations

For Equation (1) to be the starting point of the theory, the equation should first result in the correct
energy-momentum relation for a free particle and then be the Lorentz covariant. Equation (2) meets the former
condition in the form

( p“uﬂ)2 =’
Matrices are functions of the particle velocity, and thus the commutation relations (3) alone are insufficient for

proving invariance of Equation (1) under the Lorentz transformations; therefore let us first specify the functional
dependence of the matrices on the velocity. Since the trivial solution

A =u”l
istotally uninteresting, let us consider the case of linear dependence on the vel ocity
A=, + (4)
where 1*° and A** are numerical matrices. The condition (3) holdsidentically if
AT+ AT = 2(9‘”9”’ - g""g”) I
A+ A =207 (5)

l;mﬂvr +lvrﬂv,u4 — O
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Because of the antisymmetry of 1“7 =—-1%, only ten out of the twenty matrices are independent quantities.
These matrices mutually anticommute, the square of four of them is equal to unity and that of six, to minus unity.
To put it differently, Equation (5) is specified by ten generatrices of the alternion algebra “A,, which is
isomorphous with the algebra of the sixteenth order quaternion matrices (Zaitsev, 1974). Since they are not
convenient, let us replace the quaternion matrices with ten complex, irreducible, unitary 32™ order matrices

() =) () =) ®

This situation arises in construction of Dirac matrices, which are usually chosen as complex fourth order
matrices even though the equation

v

Yyt +yyt =297

is satisfied by four second-order quaternion matrices.
From Equations (5) and (6) it follows that four matrices are Hermitian and six are anti-Hermitian

(/Ioa )+ - (ﬁab)+ =-1® ab=1234 @)

If amatrix A isintroduced
A — 112113114123124134 , A+ — A—l — —A (8)
then the Hermitian conjugations conditions (7) can be rearranged into

(27 ) = AP AT €)

Represented in the form (5) the commutation relations are unwieldy and inconvenient in proving the relativistic
invariance; however, they can be represented in asimpler form. Let us define a symmetrical tensor g,

O0="9u="9r="0ss="0su=1 gaﬁzo if a=p (10)

henceforth subscripts of initial letters of the Greek alphabet «,f3,7,6 take on values from 0 to 4 while those of
the middle of the alphabet from 0 to 3. The inverse tensor g’ provides a compact restatement of commutation
relation (5)

AP+ A0 =2(g°g” g7 g’ )l (11)

Equations (4), (10) and (11) make it possible to prove the relativistic invariance of Equation (1) by using a
five-dimensional group of transformations of coordinate O(4,1). For this purpose extend Equation (1) to the case
of afive-dimensional pseudo-Euclidian space with a metric tensor (10)

. oD
1%y =—-m®=0 12

(where U“ is the 5-velocity, u“u, =0) and then prove invariance of this equation under the group of
five-dimensional transformation O(4,1), which contains the Lorentz group as a subgroup. Under reduction of O

(4,1) to the Lorentz group, we assume that x* = Const,u* =1 and % =1 then we have Equation (1); in
X

other words, one can assume that Equation (1) is invariant under five-dimensional transformations, but the
physical solution does not depend on the fifth coordinate. Incidentally, Equation (12) can be interpreted
differently, but we will not discuss these possibilities, for using the five dimensions is merely a convenient tool,
which enables us to make full use of simplicity of the commutation relations (11).

2.2 The Invariance of the Equation

To prove invariance of the equation, it is sufficient to show (Zaitsev, 1974) that for any transformation of
coordinates

(x) =2,


http://www.ccsenet.org/apr

WWW.CCSenet.org/apr Applied Physics Research Vol. 5, No. 3; 2013

(x”‘ ) X, =inv (13)
thereis alinear transformation §(a) of wave functions, the primed and unprimed reference frame

@' (X)=S(a)o(x);

(D(x):S‘l(a)zb'(x') (14)

and @ (x) is a solution of the equation, which has the form of Equation (12) in the primed reference frame

s
i1 u,

a(xd).—m @ (X)=0 (15)

Substitute (14) into (12); multiply the left-hand side by @), and use the definition (13) to have

ety s O o
iSA”S alaju, 6(x‘$)' -m|®'(x)=0

This equation coincides with (15), if the matrix has the property
aa,SA”st =47 (16)
Construct Sfor the infinitesimal proper transformation of the group O (4,1)

B _ 5Py B
a, =90, +&,,;

aa/? = gaﬁ + 8aﬂ (17)
with

&

ap (18)

= _gﬁa

Expand Sin power of & and keep only linear terms

Szl—la‘we
A

ap (19)

where ¢ = -c”* by Equation (18). Substitute Equations (17)-(19) into Equation (16), keep first-order terms
in &, usethe notation [B,C]=BC-CB for the commutation brackets and have

2[6055,175]: goﬁlﬂy _gwyﬂﬁ'ﬁ +gﬂrﬁll5 _gﬂﬁﬂw
The antisymmetric solution of this equation
a 1 e
O"B:ng[ﬂﬂy,l ‘5} (20

is, by virtue of diagonality of the metric tensor and antisymmetry of A%, a sum of mutually commutating
terms; in particular, o hastheform

0_12 — 120210 _ 123213 _1242/14
According to Equation (19) Sfor an infinitesimal transformation is given by

S= 1—% 9,8 A7 A7 ]

Hence, for rotation through afinite angle @ about this axisin the direction labeled nis represented as
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S= exp{—%a)oﬂﬁ Panﬂ} (21)

where PJ, is the generator of rotation about this axis. The matrix S is not, generally speaking, unitary but
formula (9) easily shows that

Aot A=-0,
consequently, for proper transformations

A'S'A=S" (22)
Let us consider improper transformations of space reflection and time reversal. For space reflection the matrix a
isdiagonal

0

& =al=—al=—a} = -al-1,
then Equation (16) for the space reflection operator P is satisfied by

P — 101102103114124134 — P+ — P—l (23)
which ensures invariance of both Equation (1) and Equation (12).
Construct a transformation of the time inversion; for this purpose introduce an interaction of a particle whose
charge is e with an externa electromagnetic field A = (¢, A") by means of the gauge invariant substitution

.0

— >i—-—eA,
x ok
and rewrite Equation (1) in the form (Sapogin, 1979, 1980; Sapogin et al.,1984):
.0 0D . 0
A0 —=| A —Ai—+ +m+egl’ |@=H@
o [ [z e }
Determine transformation T assuch that if t =—t,@; =@ (t) =T (t); then the latter equation becomes
—(Ti/IOT‘l)a@'(tl =(THT-1)<D'(t')
=

~—

When the sense of timeis reserved

Uy = Uy U, = U, D = D; A* = A

and, before al, it is necessary to change the sign between two terms i% and eA ; therefore the
X

transformation is regarded as a complex conjugation operator multiplied by the matrix T:
@ =To(t)=Ta"(t) (24)
This gives

N S, a(pl(tl) AN B
(TA T |————==4—(TA T7)|-i——+eA
ot a(xk)

+m+ eqﬁ[T;loTl] t.D'(t')

and for invariance of the equation it is necessary that

« Ok

L k2 « ka L 04
TA TH=2%TA TH=24TA TH=—2"TA T1=2% (25)

Thence it immediately follows that T* =T ' =T, though the explicit form of the matrix T depends on the
particular representation of the matrix A% . Note that there isjust one matrix

1=ﬁz“ﬁ

a<pf
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which commutes with both generators o for the representation of the group O (4,1) and with the operators of
discrete transformation P and T. Under reduction of O (4,1) to the Lorentz group two more matrices

A1:AO421414124134;A2://L/11

are generated which commute with the generators o*° of the representation of the Lorentz group and
anticommute with P and T. Consequently, formulae (21), (23)-(25) specify the reducible representation of the
Lorentz group and this representation is double-valued. Indeed, consider a particular case, rotation through angle
@ about the Z-axis. Inthiscase B, =-P;; =1; using the explicit formof & we have

12
S:exp[f j cos( )+0' cos( jsin[ﬁj+ﬂa—zco{ﬁjsinz[ﬂj+
2 2 2 2 2 2
120/110123/113/124/114Sin3(2j
2

The half-angle is an expression of the double value of the wave function transformation. Therefore the
observables in the theory should be bilinear in @(x). The matrix A makes it possible to determine the adjoint
wave function @ = @* A, which isasolution of the adjoint equation

Zd)/l" +md7 0

An adjoint wave function under an arbitrary transformation of the coordinates should be transformed by the

equation @ =@ A™'S"A which for proper rotations (22) leads to @ =@ S™, for space and time inversions

Do =-OP and & =-@ T, respectively. The adjoint wave function and the matrices 1,4, and A,

make it possible to construct four independent scalar functions éﬁqﬁ;éﬁﬂ@;@/li@; and 45/12423, which under
gpace and time inversions are transformed as

DD, = DD DD =DD (263)
DA, =—DAD D, AD, = - DD (26b)
D NG, =DND &, AD, =D ND (26¢)
D ND, =DNLD B, AD. =D AD (26d)

Following the classification of (Costa de Beauregard, 1957; Zaitsev, 1974), the quantities (26a-d) are singular
and simple pseudo-scalar and singular and simple scalar, respectively, each of these functions being a unique
scalar function of the associated type, quadratic in cD(x) . To obtain a numerical scalar let us use a
representation of the function cD(x) as afour-dimensional Fourier integral.  Since each component of cD(x
satisfies the second order equation (2), the general solution represented entirely in relativistic terms has the form

@(x):ﬁ otk s {(k,u ) -t} @ (k) (27)

where

6{(kﬂu“ )2 - mz} = 2—;{5(kﬂu“ - m)+ 5(kﬂu” + m)}

istherelativistic & -function and the amplitude @ (k)= (k° ) satisfies the equation

(A*k, +m)@(k)=0 for (ku) =
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Because the integrand includesa o -function, the integration is performed over just two Lorentz-invariant hyper
surfaces kﬂu" =1m, rather than the entire four-dimensional  k-space. This alows for decomposing the
integral (27) into two summands

k u"+m)

®(x) =" (x)+ 2 (x); Id“ @ (k) (28)
Using this representation and integrating over the three-dimensional volume, we have

00 dv 0V Vi Nz
e L 7=¢$jd4k5(kﬂu*+m)<p(k)¢>(k)

oD v oF N _ i _2m)-(kutm kuFm
oo e e e A

Combining these relations and using the equality

5(kﬂu” - m)—§(kﬂu“ + m) = e(kﬂu“)é{(kﬂu” )2 - mz}

jcp U —

we find that

_ d . -
DU g_uyg(p 7\/ i jd“ke(kﬂu”)cs{(kﬂu*‘)z —mz} (k)@ (K) (29)

where

o(kU) = 1 ifku>0
(ku) = ~1ifku<0

The right-hand side of Equation (29) is explicitly represented in covariant form, which facilitates a study of
properties, which can be traced to the space and time jnversions. More specifically, Equation (29) is a simple
pseudo-scalar because ~ d’k and 5{:} u“ ar} are simple scalars, ¢(k,u”) is asingular scalar, (¢
is an odd function and k” and U” are simple and singular vectors, r&epectlvely) and @ (k)@ (k) isa
singular pseudo-scalar, according to the definition (27) and Equation (26a).

2.3 The Mass Determination
It iseasy to construct asimple scalar

Qj/]lu/’ oo u/‘a_(p/]ld) d_V
ox* ox* 14
which can, following (Sapogin, 1979,1980), be interpreted as the particle mass while the nonlinear equation is
represented as follows:

. 0D oo
i — DNV — - 30
~ ( A= ax,,Ai J (30)

Unfortunately, the authors can only look at this fundamental (in our view) equation. It appears that any further
progress in finding a solution to such an equation will be achieved with the help of computers and future symbol
mathematics programs (of the Maple-16, Mathematica-9 types, etc.). For this purpose equation (30) should have
a form with a clear matrix appearance. It is well known that the solution will not depend on a concrete
representation of matrices 4,4, , it is only important that the commutations relations were satisfied. By the
way, the latter can be checked by direct finding of commutators and anticommutators with apparent matrix
representation. Let us note that the authors of (Sapogin et al., 1974, 2003, 2005, 2008) had received these results
long before the epoch of personal computers and symbol math programs. When these things appeared, the first
thing the authors did was to check the correctness of matrix correlations of the size 32x32!

7
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In order to receive a concrete appearance of al the matrices, let us apply the bloc ideas. For this purpose, let us

write down the basic matrices y0,71,72,73,9",Z,i

4. The Explicit form of Matrices

o o o O

o o o 0O

o o o 0O

o oo oo

o o - O

o - o O

o = O O

- o o O

o o o o~

o o = O

constructed

=
Z
=
=

be

can
=
Z 2 Z
Z Z £ £ Z £ Z
Z Z Z Z
Z Z Z Z
- Z Z Z

=
Z

—i

0,123;
+1_7_1_'
matrices
Z Z Z Z
Z Z Z Z Z
z
Z Z £ Z Z Z
zZ =z
Z Z =z

bloc

A% 2% A% 0% A A8, A, A%, 4%, 4%, which have a clear appearance:

A1 =

04 =

20" u,v

w1

supplementary

i
=
=
1

=
=z

10
—i

Z
Z
—i
Z

u,v,o,r=021234 and ¢
=

7/;17/1/ +7V7/;t
matrices
Z EZ Z Z
Z Zz Z
—i
= = = = =
= = = =
= = =
i = = =
—i = =
£ £ £ £ £ EZ E
= = = =
!

=z
=z

—i

basic
Z £ £ Z E

i

Z 2 F

Z £ £ 2
zZ Z Z Z Z
Z £ £ Z
L1

i

these
LISk
Al2

For these matrices the following standard commutation relations are correct:

where
From


http://www.ccsenet.org/apr

WWW.CCSenet.org/apr Applied Physics Research Vol. 5, No. 3; 2013

2z =z =2 =2 2 Z Z =3 [z =z =z = =z =z =z —i]
Z £ Z EZ EZ EZ w3 E Z Z £ £ E E i Z
Z Z Z =Z Z w3 Z = Z £ E E E — E E
Z Z Z Z 3 Z £ E z Z Z EZ i EZ EZ Z
wld = A23 =
Z £ Z w3 Z EZ EZ E Z 2 E — £ E E EZ
Z Z w3 Z £ Z Z E z Z i =Z = £ £ =
Z v3 Z Z 2 Z £ E zZ — Z Z Z EZ EZ Z
lvsa =z =z =2 =z 2 =z z| l: =z =z =z =z =z £ £Z/]
[z = = =z =2 =z — 2| [z =z =z 2 — =z =z Z
Z Z Z EZ Z EZ Z — Z =z ¥ £ Z —i Z =
zZ Z Z Z i Z £ E zZ Z Z £Z Z Z — =Z
zZ ©Z 2 £ Z i £ E z Z Z Z Z EZ Z =
w24 = A3 =
Z Z — £ Z EZ £ E i Z 2 Z Z Z E Z
Z Z Z — £ Z EZ E zZ : Z £Z Z =z Z Z
i © Z £ Z £ £ Z zZ =z i £ =2 2 Z =
Lz z =z =z =z 2] lz =z =z : = =2 =z =/

Let us define four-velocity u” = (u0,ul,u2,u3) = (E;%) . The matrices in the main equation (30) will be defined
e

as.
A% =0+ A%ul+ A%u2+ A%u3+ A%
At =20+ 0+ A%u2+ A®u3+ A"
A% = 2%u0+ A7ul+0+ A%Pu3+ 1%
A% = 2%u0+ 2%+ A%u2+0+ 2%
The equation then will ook as follows:
[ﬂo oD L p02 oD 22 acD L 202 o
oxt ox°
The mass term of this equation will then be defined by thefollowing correlation:

O AU — 0o u/,_acb A,D v
v ox" ox* /4

] mo =0 (31)

because @ =@ A; A =A%AMA% A% A= APARIMARP0% A, = AN,

The explicit form of 4 matrices 1“ depending on velocity, as well as of numerical matrices A, 4,4, of the
size 32x32. Using a good personal computer it is possible to prove the correctness of the correlationsin (5) by
making direct computations of the commutators and anticommutators with the help of symbol mathematics
programs (Maple-16, Mathematica-9).

3. Solve Equations
3.1 A modified Scalar Version of the Integro-Differential Equation

The attempts to solve equation of the (30), (31) type gave no result. However, (Sapogin et al., 2003, 2005,
20084) an interesting was found for a modified scalar version of the integro-differential equation (30), which
may be written down as follows:

[aaaa
—t—+—

: o 0D (X,Y,7,1)
t)=-21D(x,Yy,zt cD t—ddd
"y azj (X, y,zt)=-2i (xyz)ojojéf (x,y,2, = xdydz (32

We will seek the solution of this equation in the form
D(x,Y,z,t) = F(x y, 2)exp(—i (ot — kx—ky —kz)) ,

where
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F(xy,2) = X(X)Y(y)Z(2)
and o,k are some constant parameters. Substituting these expressions in (32), we obtain under condition
o =3k following equation w.r.t XY ,Z:

X0 YY), 2@ _
X0 Y 2

Differentiating the left-hand and right-hand sides w.r.t. x, y, z successively, we obtain three equations for
X(x),Y(¥).2(2):

—Zw)jXZ(X)dX- j‘Yz(y)dy- ]‘Zz(z)dz

X'(X) I 2 y 2 T 2
(W} = 20X (x)ojv (y)dy.ojz (2)dz,
(%j :—2a;Y2(y):J‘X2(x)dx~ ;[Zz(z)dz, (33)

Z'@2) N PP 9
(mj =207 (z)ojx (X)dx- OjY (y)dy.

Putting

U= [X*dx, V(y)= [V(dy W(2) = [Z°(@D)az,

we obtain the system of ordinary differential equations for
X(X),Y(y),--W(2):

X " % = 20X VW,U (X) = X?(X),

Y-

@ = —20Y3UW,V (y) = Y2(y),

._ﬁ__ 3 7\ — 72
z R 2070V W'(2) = Z(2).

Further, we have put the numerical value of w, namely, cw =— (from behind the oscillation of charge) and

integrated numerically (with the help of Maple-16) this system under following initial conditions (reasonable
from physical point of view):

X(0)=Y(0)=2(0) =1L X(0Q)=Y'(0)=Z'(0)=U(0) =V(0) =W(0) =0
According to obtained solution X(x), Y (y), Z(z) areidentical rapidly decreasing functions of following type:

X(x) o exp(=x"), Y(y) < exp(-y®), Z(2) «exp(-z"), 1<p<2 (35

The plot of X(x) isshown in Fig.1.
3.2 Calculation of Dimensionless Electrical Charge and the Value of Fine-Sructure Constant

The basic equation (32) can be reduced to the scalar equation (Sapogin et al., 1984, 1988, 1991) for the density
of the space charge of the space charge of the bunch, which represents the particles:

laCD(r,t) oD(r, t) 47z1CD(r t)I o' (s t)aCD(st) oD (s,1)
c ot or ot

CD(s,t)}szds =0 (36)
Let us solve this equation together with the Poisson equation (Sapogin et al., 1984, 1988, 1991):

10
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divgrad ¢ = —47p
We seek the solution in the form

@(r,t)= F(r)exp[-i(wt —kr)]
We get the following system of equationsif the condition

w =kc
is fulfilled:
= — r 2
dF) , BroP) ¢ F (sus-o0,
dr h
() 2dgr) ,_lﬁ-z
= 4rp(r) = AT F (),
where

o(0) :éxFr F2(r)

isthe electrical charge density. Let us suppose

x:LR, f00=F0 | E@

F(0)

p(x)=—2— "5
R2F(0)

2
_ 87oR'F (0)
- h

K

System (38) can be expressed in dimensionless form:

2
FINE -0

d?p(x) 2dp(X
0. 2080

(37)

(39)

(39)

Aslong aspotential p with the accuracy up to an additive constant and its value does not affect the intensity of
electrical field E =—gradg, let us choose ¢ =0. Due to the spherical symmetry in the center of the particle,
the condition E=0 isfulfilled. Solving numerically the Cauchy problem for the system (39), taking the value
K — 16w —Z2 2 4u (where 4u from oV — 4ur’dr, 2 fromintegral (36) and 2 from charge oscillation) and

theinitial conditions

f(0)=1, f(0)=0, ¢(0)=0, ¢(0)

we obtain the following integrals

lg = [ £?(X)dx = 8.5137256105758897351-10°; 1° =
0

I E

|, = j X* f 2(x)dx = 3.2493214-10°°
0

11

137.9623876

= % j X*E?(X)dx = 5.6857305-10°°
0

(40)

(41)

(42)
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The quantity | o Isadimensionlesselectrical charge, which is brought to the following dimensional form:

Q =+/icl,, = 4.78709-102CGSE

This value is less than the modern experimental value of the electron’s charge by only 0.3%. This is a fairly
accurate number for the first theoretical attempt of the charge calculation. The plot of f(x) is shownin Fig.1.
Thusit is not unusua to bring out the “corrections” of the J. Schwinger typeto the integral (41)

3

15
I, =l +=>——25=85424692-107,
87 64r

which corresponds to the value of charge e = 4.803 2514-10° CGSE and the value of fine-structure constant
a == 1/137.03552 . Calculation spectrum masses some elementary particles see (Sapogin et al., 2008a, 2008b,
2010).

The quantization of the electrical charge and masses seems to be the consequence of the balance between the
dispersion and nonlinearity, which determines stable solutions.

The found density distribution for the particle’s electrical charge allows usto determine the electrical form factor
for the same particle

F(a) = [p(x)exp[-igx]dV (44)

We regret that we have not succeeded in finding an analytical solution of Equation (39), but we are able to give a
decent approximation. Let uslook for a solution of Equation (39) in the form

f(x) = sechR(x) (45)
Substituting Equation (45) into Equation (39) and taking into account that for small R we have

lSil’]hZRz R
2

we obtain

(RR) =167%*; R= \/%xz (46)

f () = sech \/%xz (a7

It isinteresting to note that if the particle’s 4-velocity is assumed to be zero at matrix . , then system (30) will
reduce to eight similar Dirac equations.

4. Problems
4.1 The Dirac Equation

In our view, athough the Dirac equation describes the hydrogen atom spectrum absolutely correctly, it is not
properly a fundamental equation. It has two weak points: the correct magnitude of the velocity operator’s proper
value is absent. It is known that in any problem of this type the proper value of the velocity operator is always
equal to the velocity of light! In fact, Russian physicist and mathematician V.A.Fok regarded this as an essential
defect of the Dirac theory.

The equations of the Unitary Quantum Theory we are proposing are more correct and fundamental. For this
reason, atransition from correct fundamental equations to the incompletely accurate Dirac equation needs such a
strange requirement as

u,=0
However, this requirement is absolutely unsatisfactory both from the physical and the mathematical points of

view. Four-velocity has 4 components, of which three are usual components of the particle velocity aong three
axes, and they really can tend to zero. But the same cannot be done with the fourth component.

12
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4.2 The Theories of Aether

In the second paragraph of the preface of the book A History of the Theories of Aether and Electricity, by Sir
Edmund T. Whittaker (Edinburgh, Scotland, April, 1951) was written the following: “A word might be said
about the title ‘Aether and Electricity’. As everyone knows, the aether played a great part in the physics of the
nineteenth century; but in the first decade of the twentieth, chiefly as a result of the failure of attempts to observe
the Earth’s motion relative to the aether, and the acceptance of the principle that such attempts must always fail,
the word ‘aether’ fell out of favour, and it became customary to refer to the interplanetary spaces as ‘vacuous’;
the vacuum being conceived as mere emptiness, having no properties except that of propagating el ectromagnetic
waves. But with the development of quantum electrodynamics, the vacuum has come to be regarded as the seat
of ‘zero-point” oscillations of the electromagnetic field, of the ‘zero-point’ fluctuations of electric charge and
current, and of a ‘polarization’ corresponding to a dielectric constant different from unity. It seems absurd to
retain the name ‘vacuum’ for an entity so rich in physical properties, and the historical word ‘aether’ may be
fitly retained. ” Of course, now aether is not old aether of the nineteenth century.

The question is that the main relativistic relation between energy, impulse, and mass

E’=P*+m’ (48)
has been still beyond any doubt. In particular, all of the previous equations are based on relativistic invariance.
Nevertheless, we shall ask ourselves once again about what is happening with that relation at the exact moment
when the wave packet disappears being spread over the space. At that moment the particle does not exist as a
local formation. This means that in the local sense there is no mass, local impulse, or energy. The particle in that
case, within sufficiently small period of time, is essentially non-existent, for it does not interact with anything.
Perhaps this is why the relation (48) is average and its use at the wavelength level is equal or less than the De
Broglie wavelength, which isjustillegal. The direct experimental check of that relation at small distances and
short intervals is hardly possible today. If the relation (48) is declined, then it may result in an additional
conservation of energy and impulse refusal; but, as we know, according to the Standard Quantum Theory, that
relation may be broken within the limits of uncertainty relation.

4.3 The Lorenz’s Transformations

On the other hand, the Lorenz’s transformations have appeared when the transformation properties of Maxwell’s
equations were analyzing. However electromagnetic waves derived from solutions of Maxwell’s equations move
al in vacuum with the same velocity, i.e. are not subjected to dispersion and do not possess relativistic
invariance. Our partiad waves (may be it is gravitation waves?), which form wave packet identified with a
particle, possess always the linear dispersion. Under such circumstances, it would be quite freely for authors to
spread the requirement of relativistic invariance to partial waves. Such requirement has sense in respect only to
wave packet’s envelope, which appears if we observe a moving wave packet and his disappearance and
reappearance. May be the origin of relativistic invariance would be connected in future with the fact that an
envelope remains fixed in al inertia reference frames; only the wave’s length is changed.

It’s quite complicated (Sapogin et al. 2012a, 2012b, 2013). The special relativity—is in fact Lorentz
transformations (1904) derived by Vogt (1887) in the century before last. These transformations followed from
the properties of Maxwell equations which are also proposed in the nineteenth century (1873). One of these
equations connecting electrostatic field divergence and electric charge (Gauss’ law of flux), in fact isjust another
mathematical notation of Coulomb’s law for point charges.

But today anybody knows that Coulomb’s law is valid for fixed point charges only. If charges are frequently
moving Coulomb’s law is not performed. Besides anybody knows that lasers beams are scattered in vacuum one
over another, which is absolutely impossible in Maxwell equations. That means that Maxwell equations are
approximate - and for the moving point charges experimental results essentially differs from the estimated ones
in the case charges areas are overlapping.

Few people think about the shocking nonsense of presenting in any course of physics of point charge electric
field in the form of a certain “sun” with field lines symmetrically coming from the point. But electric field —isa
vector, and what for isit directed? The total sum of such vectorsisnull, isn’tit?

There are no attempts to talk about, but such idealization is not correct. We should note that Sir Isaak Newton
did not used term of a point charge at al, but it’s ridiculous to think that such simple idea had not come to him!
As for Einstein, he considered “electron is a stranger in electrodynamics”. Maxwell equations are not ultimate
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truth and so we should forget, disavow the common statement about relativist invariance requirement being
obligatory “permission” for any future theory.

To reassure severe critics we should note that UQT is relativistically invariant, it alows to obtain correct
correlation between an energy and impulse, mass increases with arate, asfor relativistic invariance just follow of
the fact that the envelope of moving packet is quiet in any (including non-inertial) reference systems. To be
honest we should note that subwaves the particles consist of are relativistically abnormal, at the same time
envel ope wave function following from their movement confirms terms of Lorentz transformations.

4.4 The spinor Quantum Electrodynamics

The success of Maxwell equations in description of the prior-quantum view of world was very impressing. Its
correlation of the classical mechanics in forms of reguirement to correspond Lorentz transformations was
perfectly confirmed by the experiments that all these had resulted in unreasoned statement of Maxwell equations
being an ultimate truth... Other reasons for this were later very carefully investigated by a disciple of one of the
authors (L.S.), Professor RatisYu.L. (S.Korolev Samara State Aero-Space University), who has formulated the
modern spinor quantum electrodynamics from the UQT point of view:

1). Maxwell equations contain constant ¢, which is interpreted as phase velocity of a plane el ectromagnetic wave
in the vacuum.

2). Michelson and Morley have never measured the dependence of the velocity of a plane electromagnetic wave
in the vacuum on the reference system velocity as soon plane waves were mathematical abstraction and it was
impossible to analyze their propertiesin the laboratory experiment in principle.

3). Electromagnetic waves cannot exist in vacuum by definition. A spatial domain where an electromagnetic
wave is spreading — is no longer a vacuum. Once electromagnetic field arises in some spatial region at the same
moment such domain acquires new characteristic — it became a material media. And such media possesses
special material attributes including power and impul se.

4). Since electromagnetic wave while coming through the abstract vacuum (the mathematical vacuum)
transforms it in amaterial media (physical vacuum) it will interact with this media.

5). The result of the electromagnetic wave and physical vacuum interaction are compact wave packets, called
photons.

6). The group velocity of the wave packet (photon) spreading in the media with the normal dispersion is always
lessits phase velocity.

All abovementioned allows making unambiguous conclusion: the main difficulties of the modern relativistic
gquantum theory of the field arise from deeply fallacious presuppositions in its base. The reason for this tragic
global error wasa tripe substitution of ideas-velocity of electromagnetic wave packets ‘c’ being transformed
in numerous experiments physics have construed as constant ‘c’ appearing in Maxwell equations and Lorentz
transformations. Such blind admiration of Maxwell and Einstein geniuses (authorsin no case do not doubt in the
genius of these persons) had led XX century physics up a blind alley. The way out was in the necessity of
revision of the entire fundamental postulates underlying the modern physics. Exactly that was done by UUQFT
(Sapogin, 2010b, 2011).

4.5 The velocity of Electromagnetic Waves

Some time ago CERN has conducted repeated experiments of the neutrino velocity measurement that appeared
to be higher than velocity of the light. For UUQFT they were like a bam into the wounds. In fact the
movements in excess of the light velocity were discovered earlier by numerous groups of researches. The most
interesting were experiments of (Wang, 2000, Princeton, USA), they had disclosed velocities 310 times higher
than the light. Nearly everybody disbelieved it. And now the neutrino movements exceeding the velocity of the
light were disclosed in CERN. The importance of these experiments for UUQFT is settled in the article
(Sapogin, 2011) where at the page 69 it is written that “this should be considered as direct experimental proof of
UUQFT principle”.

As soon relativistic invariance underlies every of the numerous quantum theories of the field, it leaves a devilish
imprint at everything. Nevertheless relativistic ratio between energy and impulse athough being absolutely
correct in fact are not obligatory follow from relativistic invariance only and can result from another
mathematical reasons that will be discovered in future.
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4.6 The Sandard Model and a Higgs Boson

Nowadays Standard Model (SM) combines the most elegant mathematical miracles of researches which hands
were tied with relativistic strait-jacket and it not so bad describes these experimental data.  Amazing that it was
possibleto think it out at all.

Nowadays to confirm SM one should find a Higgs boson and for this purpose the governments of some countries
assigned essential sums for the construction of Large Hadron Collider (LHC). For entire SM the interaction with
Higgs field is extremely important, as soon without such afield other particles just will not have mass at al, and
that till lead into the theory destruction.

To start with we should note that the Higgs field is material and can be identified with media (aether) asit wasin
former centuries. But SM authors as well as modern physics have carefully forgotten about it. We would not like
to raise here once again the old discussion about it. It’s a quite complicated problem and let us leaves it to the
next generation.

But another problem of SM has never mentioned before: in the interaction with Higgs field any particle obtains
mass. As for Higgs boson itself, it is totally falling out of this universal for every particle mechanism of mass
generation! And that is not a mere trifle, such “mismatching” being fundamental fraught with certain
consequences for SM.

After Higgs boson discovery nothing valuable for the world will happen except an immense banquet. Of course
boson will justify the waste of tens billions of Euros... But even now some opinionsin CERN are expressed that
probably boson non-disclosure will reveal a series of new breath-taking prospects... and where were these voices
before construction, we wonder? But that’s not the point! If this elusive particle were the only weakness of SM!
To our regret today this theory cannot compute correctly the masses of elementary particles including the mass
of Higgs boson. More worse, that SM contains from 20 to 60 adjusting-arbitrary! -parameters (there are different
versions of SM). SM does not have theoretically proved agorithm for spectrum mass computation — and no
ideas how to doit!

All these bear strong resemblance to the situation with Ptolemaic model of Solar system before appearance of
Kepler’s laws and Newton’s mechanics. This earth-centered model of the planets movement in Solar system at
the moment of appearance had required introduction of 40 epicycles, specially selected for the coordination of
theoretical forecasts and observations. Its description of planets positions was quite good; but later to increase
the forecasts accuracy it had required another 40 additional epicycles...

Good mathematicians know that epicycles arein fact analogues of Fourier coefficients in moment decomposition
in accordance with Kepler’s laws; so by adding epicycles the accuracy of the Ptolemaic model can be increased
too. However that does not mean that the Ptolemaic mode is adequately describing the reality. Quite the
contrary...

The Unitary Quantum Theory alowed computing the mass spectrum of elementary particles without any
adjusting parameters. By the way computed spectrum (Sapogin et a., 2008ab, 2010) has particle with mass
131.51711 GeV (L=2, m=2). Once desired it can be caled Higgs boson, it lies within declared by the
CERN+Tevatron mass interval 125-140 GeV expected to contain Higgs boson. CERN promises to obtain more
precise mass value by December 2012.

5. Conclusion

It seems that if UQT were correctly describing the world properties the radical transformation of the civilization
would be possible. In conclusion we should express our astonishment that UQT is incomprehensible for any
thinking person, it’s a mystery to us. We are concluding by reminding of the prophetical words of the famous
US science-fiction author Arthur Clarke: “Something that is theoretically possible will be achieved practically
independent of technical difficulties. It’s enough to desireit.” (back translation)- Profiles of the Future, 1963.

We would like to add the amazing phrase of A. de Saint-Exupery: “The truth is not something that could be
proved, but something that makes all things easy and clear ” (back tranglation).
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